




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年浙江省嘉興市重點名校高三4月質(zhì)量調(diào)研(二模)數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.2.拋物線方程為,一直線與拋物線交于兩點,其弦的中點坐標(biāo)為,則直線的方程為()A. B. C. D.3.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.4.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.5.在中,為邊上的中點,且,則()A. B. C. D.6.已知的內(nèi)角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.7.已知函數(shù),關(guān)于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)8.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.9.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設(shè),則的取值范圍是()A. B. C. D.10.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.211.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.12.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側(cè)棱長為,則它的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在封閉的平面區(qū)域內(nèi)任意兩點的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個點,,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.14.已知,在方向上的投影為,則與的夾角為_________.15.在等差數(shù)列()中,若,,則的值是______.16.如圖,在中,,,,點在邊上,且,將射線繞著逆時針方向旋轉(zhuǎn),并在所得射線上取一點,使得,連接,則的面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線C1和C2的極坐標(biāo)方程:(Ⅱ)設(shè)射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點,求|AB|的值.18.(12分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當(dāng)時,不等式恒成立,求證:.19.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若對恒成立,求的取值范圍.20.(12分)如圖,設(shè)橢圓:,長軸的右端點與拋物線:的焦點重合,且橢圓的離心率是.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過作直線交拋物線于,兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.21.(12分)已知函數(shù).(1)若函數(shù),試討論的單調(diào)性;(2)若,,求的取值范圍.22.(10分)設(shè)函數(shù),其中是自然對數(shù)的底數(shù).(Ⅰ)若在上存在兩個極值點,求的取值范圍;(Ⅱ)若,函數(shù)與函數(shù)的圖象交于,且線段的中點為,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.2.A【解析】
設(shè),,利用點差法得到,所以直線的斜率為2,又過點,再利用點斜式即可得到直線的方程.【詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點,∴直線的方程為:,即,故選:A.【點睛】本題考查直線與拋物線相交的中點弦問題,解題方法是“點差法”,即設(shè)出弦的兩端點坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點坐標(biāo)建立關(guān)系.3.B【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進(jìn)行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當(dāng)m,n時,檢驗可得,A、C、D都不正確,故選:B.【點睛】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項.4.D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運算能力.5.A【解析】
由為邊上的中點,表示出,然后用向量模的計算公式求模.【詳解】解:為邊上的中點,,故選:A【點睛】在三角形中,考查中點向量公式和向量模的求法,是基礎(chǔ)題.6.C【解析】
由,化簡得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當(dāng)且僅當(dāng)時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點睛】本題主要考查了代數(shù)式的化簡,余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.7.D【解析】
原問題轉(zhuǎn)化為有四個不同的實根,換元處理令t,對g(t)進(jìn)行零點個數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時,g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實數(shù)a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數(shù)零點問題,關(guān)鍵在于等價轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.8.D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時最小,設(shè)正方體的棱長為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設(shè)正方體的棱長為,則,∴.
取,連接,則共面,在中,設(shè)到的距離為,
設(shè)到平面的距離為,
.
故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.9.C【解析】
以為坐標(biāo)原點,以分別為x軸,y軸建立直角坐標(biāo)系,利用向量的坐標(biāo)運算計算即可解決.【詳解】以為坐標(biāo)原點建立如圖所示的直角坐標(biāo)系,不妨設(shè)正方形的邊長為1,則,,設(shè),則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標(biāo)運算求變量的取值范圍,考查學(xué)生的基本計算能力,本題的關(guān)鍵是建立適當(dāng)?shù)闹苯亲鴺?biāo)系,是一道基礎(chǔ)題.10.B【解析】
求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.11.C【解析】
由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.12.C【解析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設(shè)球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設(shè)球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學(xué)生的空間想象能力和計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先找到平面區(qū)域內(nèi)任意兩點的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區(qū)域任意兩點距離最大值為,而,當(dāng)且僅當(dāng)時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時,一定要數(shù)形結(jié)合,本題屬于中檔題.14.【解析】
由向量投影的定義可求得兩向量夾角的余弦值,從而得角的大?。驹斀狻吭诜较蛏系耐队盀?,即夾角為.故答案為:.【點睛】本題考查求向量的夾角,掌握向量投影的定義是解題關(guān)鍵.15.-15【解析】
是等差數(shù)列,則有,可得的值,再由可得,計算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【點睛】本題考查等差數(shù)列的性質(zhì),也可以由已知條件求出和公差,再計算.16.【解析】
由余弦定理求得,再結(jié)合正弦定理得,進(jìn)而得,得,則面積可求【詳解】由,得,解得.因為,所以,,所以.又因為,所以.因為,所以.故答案為【點睛】本題考查正弦定理、余弦定理的應(yīng)用,考查運算求解能力,是中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)根據(jù),可得曲線C1的極坐標(biāo)方程,然后先計算曲線C2的普通方程,最后根據(jù)極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式,可得結(jié)果.(Ⅱ)將射線θ=分別與曲線C1和C2極坐標(biāo)方程聯(lián)立,可得A,B的極坐標(biāo),然后簡單計算,可得結(jié)果.【詳解】(Ⅰ)由所以曲線的極坐標(biāo)方程為,曲線的普通方程為則曲線的極坐標(biāo)方程為(Ⅱ)令,則,,則,即,所以,,故.【點睛】本題考查極坐標(biāo)方程和參數(shù)方程與直角坐標(biāo)方程的轉(zhuǎn)化,以及極坐標(biāo)方程中的幾何意義,屬基礎(chǔ)題.18.(1)詳見解析;(2)詳見解析.【解析】
(1)利用求導(dǎo)數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號,即可證明結(jié)論;(2)當(dāng)時,不等式恒成立,分離參數(shù)只需時,恒成立,設(shè)(),需,根據(jù)(1)中的結(jié)論先求出,再構(gòu)造函數(shù)結(jié)合導(dǎo)數(shù)法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數(shù),則,所以在區(qū)間上是增函數(shù).又因為,,所以在區(qū)間上有且僅有一個零點,且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當(dāng)時,;當(dāng)時,恒成立,設(shè)(),所以.由(1)可知,,使,所以,當(dāng)時,,當(dāng)時,,由此在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以.又因為,所以,從而,所以.令,,則,所以在區(qū)間上是增函數(shù),所以,故.【點睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、函數(shù)的零點、極值最值、不等式的證明,分離參數(shù)是解題的關(guān)鍵,意在考查邏輯推理、數(shù)學(xué)計算能力,屬于較難題.19.(1)或;(2)或.【解析】試題分析:(1)根據(jù)絕對值定義將不等式化為三個不等式組,分別求解集,最后求并集(2)根據(jù)絕對值三角不等式得最小值,再解含絕對值不等式可得的取值范圍.試題解析:(1)等價于或或,解得:或.故不等式的解集為或.(2)因為:所以,由題意得:,解得或.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.20.(Ⅰ);(Ⅱ)面積的最小值為9,.【解析】
(Ⅰ)由已知求出拋物線的焦點坐標(biāo)即得橢圓中的,再由離心率可求得,從而得值,得標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線方程為,設(shè),把直線方程代入拋物線方程,化為的一元二次方程,由韋達(dá)定理得,由弦長公式得,同理求得點的橫坐標(biāo),于是可得,將面積表示為參數(shù)的函數(shù),利用導(dǎo)數(shù)可求得最大值.【詳解】(Ⅰ)∵橢圓:,長軸的右端點與拋物線:的焦點重合,∴,又∵橢圓的離心率是,∴,,∴橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)過點的直線的方程設(shè)為,設(shè),,聯(lián)立得,∴,,∴.過且與直線垂直的直線設(shè)為,聯(lián)立得,∴,故,∴,面積.令,則,,令,則,即時,面積最小,即當(dāng)時,面積的最小值為9,此時直線的方程為.【點睛】本題考查橢圓方程的求解,拋物線中弦長的求解,涉及三角形面積范圍問題,利用導(dǎo)數(shù)求函數(shù)的最值問題,屬綜合困難題.21.(1)答案不唯一,具體見解析(2)【解析】
(1)由于函數(shù),得出,分類討論當(dāng)和時,的正負(fù),進(jìn)而得出的單調(diào)性;(2)求出,令,得,設(shè),通過導(dǎo)函數(shù),可得出在上的單調(diào)性和值域,再分類討論和時,的單調(diào)性,再結(jié)合,恒成立,即可求出的取值范圍.【詳解】解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全生產(chǎn)法律知識講座
- 回收黃金合同(2篇)
- 人教版小學(xué)美術(shù)一年級上冊《認(rèn)識美術(shù)工具》說課(附教學(xué)反思、板書)課件
- 《走向未來》教學(xué)課件-2024-2025學(xué)年統(tǒng)編版初中道德與法治九年級下冊
- 出版物購銷合同范本
- 學(xué)生公寓管理制度培訓(xùn)
- 手術(shù)室消防安全知識
- 辛集中學(xué)高三上學(xué)期第三次月考語文試卷
- 阿克蘇職業(yè)技術(shù)學(xué)院《國際發(fā)展與國際組織概況》2023-2024學(xué)年第一學(xué)期期末試卷
- 隴東學(xué)院《電氣安全工程》2023-2024學(xué)年第二學(xué)期期末試卷
- 電子技術(shù)基礎(chǔ)與技能(中職)PPT全套教學(xué)課件
- 2022年高考真題及答案解析《歷史、地理、政治》(湖北卷)
- 高中數(shù)學(xué)人教A版空間幾何體(省一等獎)
- 集團(tuán)項目施工管理標(biāo)準(zhǔn)化指導(dǎo)手冊
- 中藥熏洗法(課堂PPT)
- 二氧化碳滅火器安全操作規(guī)程
- “四史”概論知到章節(jié)答案智慧樹2023年溫州醫(yī)科大學(xué)
- 裝修材料購買合同范本5篇
- 急性白血病急性髓系白血病課件
- 寫字樓能耗評估和節(jié)能降耗措施
- GB/T 22341.1-2008沖天爐第1部分:型式和基本參數(shù)
評論
0/150
提交評論