福建省閩侯二中五校教學聯(lián)合體2024屆高考數(shù)學試題二輪專題突破卷_第1頁
福建省閩侯二中五校教學聯(lián)合體2024屆高考數(shù)學試題二輪專題突破卷_第2頁
福建省閩侯二中五校教學聯(lián)合體2024屆高考數(shù)學試題二輪專題突破卷_第3頁
福建省閩侯二中五校教學聯(lián)合體2024屆高考數(shù)學試題二輪專題突破卷_第4頁
福建省閩侯二中五校教學聯(lián)合體2024屆高考數(shù)學試題二輪專題突破卷_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省閩侯二中五校教學聯(lián)合體2024屆高考數(shù)學試題二輪專題突破卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的可導函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.2.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.3.設分別為雙曲線的左、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為()A. B. C. D.4.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.5.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.6.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.7.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內到兩定點距離之比為常數(shù)的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.8.已知,,是平面內三個單位向量,若,則的最小值()A. B. C. D.59.對某兩名高三學生在連續(xù)9次數(shù)學測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關于這兩位同學的數(shù)學成績分析.①甲同學的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;②根據(jù)甲同學成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學平均成績在區(qū)間110,120內;③乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關;④乙同學連續(xù)九次測驗成績每一次均有明顯進步.其中正確的個數(shù)為()A.4 B.3 C.2 D.110.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數(shù)列的前項和恒成立,則實數(shù)的取值范圍是()A. B. C. D.11.已知定義在上的函數(shù)在區(qū)間上單調遞增,且的圖象關于對稱,若實數(shù)滿足,則的取值范圍是()A. B. C. D.12.已知等差數(shù)列的前n項和為,且,則()A.4 B.8 C.16 D.2二、填空題:本題共4小題,每小題5分,共20分。13.設滿足約束條件,則的取值范圍是______.14.已知,,其中,為正的常數(shù),且,則的值為_______.15.的展開式中,的系數(shù)是__________.(用數(shù)字填寫答案)16.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側面積的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)存在一個極大值點和一個極小值點.(1)求實數(shù)a的取值范圍;(2)若函數(shù)的極大值點和極小值點分別為和,且,求實數(shù)a的取值范圍.(e是自然對數(shù)的底數(shù))18.(12分)已知△ABC的內角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.19.(12分)在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。(1)寫出直線l的普通方程和曲線C的直角坐標方程:(2)若成等比數(shù)列,求a的值。20.(12分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設,,(單位:百米).(1)分別求,關于x的函數(shù)關系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.21.(12分)在直角坐標系中,曲線的參數(shù)方程是(是參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線的極坐標方程;(2)在曲線上取一點,直線繞原點逆時針旋轉,交曲線于點,求的最大值.22.(10分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.(1)求證:;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

構造函數(shù),根據(jù)已知條件判斷出的單調性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當時,,所以,所以.由得,所以,故不等式的解集為.故選:A【點睛】本小題主要考查構造函數(shù)法解不等式,考查利用導數(shù)研究函數(shù)的單調性,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.2、B【解析】

設雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關系,進而判斷大小,結合橢圓的焦距為2,即可求出結論.【詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質,要注意雙曲線焦點位置,屬于中檔題.3、C【解析】

如圖所示:切點為,連接,作軸于,計算,,,,根據(jù)勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點睛】本題考查了雙曲線的漸近線斜率,意在考查學生的計算能力和綜合應用能力.4、C【解析】

由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.5、C【解析】

由題知:該程序框圖是利用循環(huán)結構計算并輸出變量的值,計算程序框圖的運行結果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點睛】本題主要考查程序框圖中的循環(huán)結構,屬于簡單題.6、D【解析】

根據(jù)框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,

,,,,,結束循環(huán),故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環(huán)結構,條件分支結構,屬于中檔題.7、A【解析】

根據(jù)平面內兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.8、A【解析】

由于,且為單位向量,所以可令,,再設出單位向量的坐標,再將坐標代入中,利用兩點間的距離的幾何意義可求出結果.【詳解】解:設,,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標、模的運算,利用整體代換,再結合距離公式求解,屬于難題.9、C【解析】

利用圖形,判斷折線圖平均分以及線性相關性,成績的比較,說明正誤即可.【詳解】①甲同學的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,①錯誤;②根據(jù)甲同學成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學平均成績在區(qū)間[110,120]內,②正確;③乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關,③正確;④乙同學在這連續(xù)九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應用,線性相關以及平均分的求解,考查轉化思想以及計算能力,屬于基礎題.10、B【解析】

由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數(shù)量積,點到直線的距離,數(shù)列求和等知識,是一道不錯的綜合題.11、C【解析】

根據(jù)題意,由函數(shù)的圖象變換分析可得函數(shù)為偶函數(shù),又由函數(shù)在區(qū)間上單調遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數(shù)的圖象向左平移個單位長度可得函數(shù)的圖象,由于函數(shù)的圖象關于直線對稱,則函數(shù)的圖象關于軸對稱,即函數(shù)為偶函數(shù),由,得,函數(shù)在區(qū)間上單調遞增,則,得,解得.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用函數(shù)的單調性與奇偶性解不等式,注意分析函數(shù)的奇偶性,屬于中等題.12、A【解析】

利用等差的求和公式和等差數(shù)列的性質即可求得.【詳解】.故選:.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質,考查基本量的計算,難度容易.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出可行域,將目標函數(shù)整理為可視為可行解與的斜率,則由圖可知或,分別計算出與,再由不等式的簡單性質即可求得答案.【詳解】作出滿足約束條件的可行域,顯然當時,z=0;當時將目標函數(shù)整理為可視為可行解與的斜率,則由圖可知或顯然,聯(lián)立,所以則或,故或綜上所述,故答案為:【點睛】本題考查分式型目標函數(shù)的線性規(guī)劃問題,屬于簡單題.14、【解析】

把已知等式變形,展開兩角和與差的三角函數(shù),結合已知求得值.【詳解】解:由,得,,即,,又,,解得:.為正的常數(shù),.故答案為:.【點睛】本題考查兩角和與差的三角函數(shù),考查數(shù)學轉化思想方法,屬于中檔題.15、【解析】

根據(jù)組合的知識,結合組合數(shù)的公式,可得結果.【詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數(shù)為:故答案為:【點睛】本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質上每個因式中各取一項的乘積,轉化為組合的知識,屬中檔題.16、【解析】

由題意欲使圓柱側面積最大,需使圓柱內接于圓錐.設圓柱的高為h,底面半徑為r,則,將側面積表示成關于的函數(shù),再利用一元二次函數(shù)的性質求最值.【詳解】欲使圓柱側面積最大,需使圓柱內接于圓錐.設圓柱的高為h,底面半徑為r,則,所以.∴,當時,的最大值為.故答案為:.【點睛】本題考查圓柱的側面積的最值,考查函數(shù)與方程思想、轉化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉化為函數(shù)的最值問題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)首先對函數(shù)求導,根據(jù)函數(shù)存在一個極大值點和一個極小值點求出a的取值范圍;(2)首先求出的值,再根據(jù)求出實數(shù)a的取值范圍.【詳解】(1)函數(shù)的定義域為是,,若有兩個極值點,則方程一定有兩個不等的正根,設為和,且,所以解得,此時,當時,,當時,,當時,,故是極大值點,是極小值點,故實數(shù)a的取值范圍是;(2)由(1)知,,,則,,,由,得,即,令,考慮到,所以可化為,而,所以在上為增函數(shù),由,得,故實數(shù)a的取值范圍是.【點睛】本題主要考查了利用導數(shù)研究函數(shù)的極值點和單調性,利用函數(shù)單調性證明不等式,屬于難題.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根據(jù)條件由正弦定理得,又c=2a,所以,由余弦定理算出,進而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【點睛】本題主要考查了正余弦定理的應用,運用二倍角公式和兩角和的正弦公式求值,考查了學生的運算求解能力.19、(1)l的普通方程;C的直角坐標方程;(2).【解析】

(1)利用極坐標與直角坐標的互化公式即可把曲線的極坐標方程化為直角坐標方程,利用消去參數(shù)即可得到直線的直角坐標方程;(2)將直線的參數(shù)方程,代入曲線的方程,利用參數(shù)的幾何意義即可得出,從而建立關于的方程,求解即可.【詳解】(1)由直線l的參數(shù)方程消去參數(shù)t得,,即為l的普通方程由,兩邊乘以得為C的直角坐標方程.(2)將代入拋物線得由已知成等比數(shù)列,即,,,整理得(舍去)或.【點睛】熟練掌握極坐標與直角坐標的互化公式、方程思想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關鍵.20、(1),.,.(2)當百米時,兩條直道的長度之和取得最小值百米.【解析】

(1)由,可解得.方法一:再在中,利用余弦定理,可得關于x的函數(shù)關系式;在和中,利用余弦定理,可得關于x的函數(shù)關系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1)和基本不等式,計算即得.【詳解】解:(1),是邊長為3的等邊三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道長度關于x的函數(shù)關系式為,.在和中,由余弦定理,得①②因為M為的中點,所以.由①②,得,所以,所以.所以,直道長度關于x的函數(shù)關系式為,.法2:因為在中,,所以.所以,直道長度關于x的函數(shù)關系式為,.在中,因為M為的中點,所以.所以.所以,直道長度關于x的函數(shù)關系式為,.(2)由(1)得,兩條直道的長度之和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論