福建省三明一中2024年高考模擬金典卷數(shù)學(xué)試題(三)試題_第1頁
福建省三明一中2024年高考模擬金典卷數(shù)學(xué)試題(三)試題_第2頁
福建省三明一中2024年高考模擬金典卷數(shù)學(xué)試題(三)試題_第3頁
福建省三明一中2024年高考模擬金典卷數(shù)學(xué)試題(三)試題_第4頁
福建省三明一中2024年高考模擬金典卷數(shù)學(xué)試題(三)試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

福建省三明一中2024年高考模擬金典卷數(shù)學(xué)試題(三)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當(dāng)時,最大,則()A. B. C. D.2.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知定義在上的函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.4.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直5.已知為拋物線的準(zhǔn)線,拋物線上的點到的距離為,點的坐標(biāo)為,則的最小值是()A. B.4 C.2 D.6.如圖,在中,,且,則()A.1 B. C. D.7.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.38.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.9.已知,則的值構(gòu)成的集合是()A. B. C. D.10.設(shè)直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數(shù)的取值為A.或11 B.或11 C. D.11.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.4512.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標(biāo)為1,則p=()A.1 B. C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.若奇函數(shù)滿足,為R上的單調(diào)函數(shù),對任意實數(shù)都有,當(dāng)時,,則________.14.已知向量,,若向量與向量平行,則實數(shù)___________.15.在中,已知是的中點,且,點滿足,則的取值范圍是_______.16.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點的軌跡方程為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補(bǔ),且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,,的斜率按某種排序能構(gòu)成等比數(shù)列?若能,求出的方程,若不能,請說理由.18.(12分)已知橢圓:過點,過坐標(biāo)原點作兩條互相垂直的射線與橢圓分別交于,兩點.(1)證明:當(dāng)取得最小值時,橢圓的離心率為.(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.19.(12分)已知,函數(shù),(是自然對數(shù)的底數(shù)).(Ⅰ)討論函數(shù)極值點的個數(shù);(Ⅱ)若,且命題“,”是假命題,求實數(shù)的取值范圍.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程(為參數(shù)),若直線的交點為,當(dāng)變化時,點的軌跡是曲線(1)求曲線的普通方程;(2)以坐標(biāo)原點為極點,軸非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,設(shè)射線的極坐標(biāo)方程為,,點為射線與曲線的交點,求點的極徑.21.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標(biāo).22.(10分)已知函數(shù)(,),且對任意,都有.(Ⅰ)用含的表達(dá)式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染高危戶”發(fā)生的概率,即可得出的表達(dá)式,再根據(jù)基本不等式即可求出.【詳解】設(shè)事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設(shè),則∴當(dāng)且僅當(dāng)即時取等號,即.故選:A.【點睛】本題主要考查概率的計算,涉及相互獨立事件同時發(fā)生的概率公式的應(yīng)用,互斥事件概率加法公式的應(yīng)用,以及基本不等式的應(yīng)用,解題關(guān)鍵是對題意的理解和事件的分解,意在考查學(xué)生的數(shù)學(xué)運算能力和數(shù)學(xué)建模能力,屬于較難題.2、B【解析】

利用復(fù)數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為:,位于第二象限.故選:B.【點睛】本題考查了復(fù)數(shù)的四則運算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.3、D【解析】

先判斷函數(shù)在時的單調(diào)性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質(zhì)可以得到,比較三個數(shù)的大小,然后根據(jù)函數(shù)在時的單調(diào)性,比較出三個數(shù)的大小.【詳解】當(dāng)時,,函數(shù)在時,是增函數(shù).因為,所以函數(shù)是奇函數(shù),所以有,因為,函數(shù)在時,是增函數(shù),所以,故本題選D.【點睛】本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值大小問題,判斷出函數(shù)的奇偶性、單調(diào)性是解題的關(guān)鍵.4、D【解析】

根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對選項中的命題判斷.【詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行,故正確.C.根據(jù)過一點有且只有一個平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.5、B【解析】

設(shè)拋物線焦點為,由題意利用拋物線的定義可得,當(dāng)共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準(zhǔn)線,過作交于點,連接由拋物線定義,

,

當(dāng)且僅當(dāng)三點共線時,取“=”號,∴的最小值為.

故選:B.【點睛】本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.6、C【解析】

由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點共線,又得到一個關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關(guān)知識,結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.7、B【解析】

根據(jù)極值點處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計算即可.【詳解】解:由已知得,,,經(jīng)檢驗滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.8、D【解析】

根據(jù)三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構(gòu)成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎(chǔ)題.9、C【解析】

對分奇數(shù)、偶數(shù)進(jìn)行討論,利用誘導(dǎo)公式化簡可得.【詳解】為偶數(shù)時,;為奇數(shù)時,,則的值構(gòu)成的集合為.【點睛】本題考查三角式的化簡,誘導(dǎo)公式,分類討論,屬于基本題.10、A【解析】

圓的圓心坐標(biāo)為(1,1),該圓心到直線的距離,結(jié)合弦長公式得,解得或,故選A.11、B【解析】

計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.12、C【解析】

設(shè)直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達(dá)定理可得p.【詳解】由已知得F(,0),設(shè)直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設(shè)A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標(biāo)為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達(dá)定理是解題的關(guān)鍵,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)可得,函數(shù)是以為周期的函數(shù),令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數(shù)是以為周期的函數(shù),,又函數(shù)為奇函數(shù),所以.故答案為:【點睛】本題主要考查了換元法求函數(shù)解析式、函數(shù)的奇偶性、周期性的應(yīng)用,屬于中檔題.14、【解析】

由題可得,因為向量與向量平行,所以,解得.15、【解析】

由中點公式的向量形式可得,即有,設(shè),有,再分別討論三點共線和不共線時的情況,找到的關(guān)系,即可根據(jù)函數(shù)知識求出范圍.【詳解】是的中點,∴,即設(shè),于是(1)當(dāng)共線時,因為,①若點在之間,則,此時,;②若點在的延長線上,則,此時,.(2)當(dāng)不共線時,根據(jù)余弦定理可得,解得,由,解得.綜上,故答案為:.【點睛】本題主要考查學(xué)中點公式的向量形式和數(shù)量積的定義的應(yīng)用,以及余弦定理的應(yīng)用,涉及到函數(shù)思想和分類討論思想的應(yīng)用,解題關(guān)鍵是建立函數(shù)關(guān)系式,屬于中檔題.16、【解析】

根據(jù)圓的性質(zhì)可知在線段的垂直平分線上,由此得到,同理可得,由對數(shù)運算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點坐標(biāo)為,且在線段的垂直平分線上,,即,同理可得:,,,點的軌跡方程為.故答案為:.【點睛】本題考查動點軌跡方程的求解問題,關(guān)鍵是能夠利用圓的性質(zhì)和對數(shù)運算法則構(gòu)造出滿足的方程,由此得到結(jié)果.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)不能,理由見解析【解析】

(1)設(shè),則,由此即可求出橢圓方程;(2)設(shè)直線的方程為,聯(lián)立直線與橢圓的方程可求得,則直線斜率為,設(shè)其方程為,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理可得關(guān)于對稱,可求得,假設(shè)存在直線滿足題意,設(shè),可得,由此可得答案.【詳解】解:(1)設(shè),則,,所以橢圓方程為;(2)設(shè)直線的方程為,與聯(lián)立得,∴,因為兩直線的傾斜角互補(bǔ),所以直線斜率為,設(shè)直線的方程為,聯(lián)立整理得,,所以關(guān)于對稱,由正弦定理得,因為,所以,由上得,假設(shè)存在直線滿足題意,設(shè),按某種排列成等比數(shù)列,設(shè)公比為,則,所以,則此時直線與平行或重合,與題意不符,所以不存在滿足題意的直線.【點睛】本題主要考查直線與橢圓的位置關(guān)系,考查計算能力與推理能力,屬于難題.18、(1)證明見解析;(2)存在,【解析】

(1)將點代入橢圓方程得到,結(jié)合基本不等式,求得取得最小值時,進(jìn)而證得橢圓的離心率為.(2)當(dāng)直線的斜率不存在時,根據(jù)橢圓的對稱性,求得到直線的距離.當(dāng)直線的斜率存在時,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,利用,則列方程,求得的關(guān)系式,進(jìn)而求得到直線的距離.根據(jù)上述分析判斷出所求的圓存在,進(jìn)而求得定圓的方程.【詳解】(1)證明:∵橢圓經(jīng)過點,∴,∴,當(dāng)且僅當(dāng),即時,等號成立,此時橢圓的離心率.(2)解:∵橢圓的焦距為2,∴,又,∴,.當(dāng)直線的斜率不存在時,由對稱性,設(shè),.∵,在橢圓上,∴,∴,∴到直線的距離.當(dāng)直線的斜率存在時,設(shè)的方程為.由,得,.設(shè),,則,.∵,∴,∴,∴,即,∴到直線的距離.綜上,到直線的距離為定值,且定值為,故存在定圓:,使得圓與直線總相切.【點睛】本小題主要考查點和橢圓的位置關(guān)系,考查基本不等式求最值,考查直線和橢圓的位置關(guān)系,考查點到直線的距離公式,考查分類討論的數(shù)學(xué)思想方法,考查運算求解能力,屬于中檔題.19、(1)當(dāng)時,沒有極值點,當(dāng)時,有一個極小值點.(2)【解析】試題分析:(1),分,討論,當(dāng)時,對,,當(dāng)時,解得,在上是減函數(shù),在上是增函數(shù)。所以,當(dāng)時,沒有極值點,當(dāng)時,有一個極小值點.(2)原命題為假命題,則逆否命題為真命題。即不等式在區(qū)間內(nèi)有解。設(shè),所以,設(shè),則,且是增函數(shù),所以。所以分和k>1討論。試題解析:(Ⅰ)因為,所以,當(dāng)時,對,,所以在是減函數(shù),此時函數(shù)不存在極值,所以函數(shù)沒有極值點;當(dāng)時,,令,解得,若,則,所以在上是減函數(shù),若,則,所以在上是增函數(shù),當(dāng)時,取得極小值為,函數(shù)有且僅有一個極小值點,所以當(dāng)時,沒有極值點,當(dāng)時,有一個極小值點.(Ⅱ)命題“,”是假命題,則“,”是真命題,即不等式在區(qū)間內(nèi)有解.若,則設(shè),所以,設(shè),則,且是增函數(shù),所以當(dāng)時,,所以在上是增函數(shù),,即,所以在上是增函數(shù),所以,即在上恒成立.當(dāng)時,因為在是增函數(shù),因為,,所以在上存在唯一零點,當(dāng)時,,在上單調(diào)遞減,從而,即,所以在上單調(diào)遞減,所以當(dāng)時,,即.所以不等式在區(qū)間內(nèi)有解綜上所述,實數(shù)的取值范圍為.20、(1);(2)【解析】

(1)將兩直線化為普通方程,消去參數(shù),即可求出曲線的普通方程;(2)設(shè)Q點的直角坐標(biāo)系坐標(biāo)為,求出,代入曲線C可求解.【詳解】(1)直線的普通方程為,直線的普通方程為聯(lián)立直線,方程消去參數(shù)k,得曲線C的普通方程為整理得.(2)設(shè)Q點的直角坐標(biāo)系坐標(biāo)為,由可得代入曲線C的方程可得,解得(舍),所以點的極徑為.【點睛】本題主要考查了直線的參數(shù)方程化為普通方程,普通方程化為極坐標(biāo)方程,極徑的求法,屬于中檔題.21、(1)的普通方程為.的直角坐標(biāo)方程為(2)(-1,0)或(2,3)【解析】

(1)對直線的參數(shù)方程消參數(shù)即可求得直線的普通方程,對整理并兩邊乘以,結(jié)合,即可求得曲線的直角坐標(biāo)方程。(2)由(1)得:曲線C是以Q(1,1)為圓心,為半徑的圓,設(shè)點P的坐標(biāo)為,由題可得:,利用兩點距離公式列方程即可求解?!驹斀狻拷猓海?)由消去參數(shù),得.即直線的普通方程為.因

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論