版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題28動(dòng)點(diǎn)綜合問題(32題)
1.(2023?四川遂寧?統(tǒng)考中考真題)如圖,在AABC中,AS=10,BC=6,AC=8,點(diǎn)尸為線段A3上的動(dòng)
點(diǎn),以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)A向點(diǎn)B移動(dòng),到達(dá)點(diǎn)B時(shí)停止.過點(diǎn)P作尸M,AC于點(diǎn)M、作PN±BC
于點(diǎn)N,連接MN,線段的長(zhǎng)度y與點(diǎn)尸的運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)關(guān)系如圖所示,則函數(shù)圖象最低點(diǎn)
E的坐標(biāo)為()
時(shí)
c8k
10*
A.(5,5)B.[知(3224、<323
2.(2023?廣東深圳?統(tǒng)考中考真題)如圖1,在RtZXABC中,動(dòng)點(diǎn)尸從A點(diǎn)運(yùn)動(dòng)到8點(diǎn)再到。點(diǎn)后停止,
速度為2單位/s,其中8尸長(zhǎng)與運(yùn)動(dòng)時(shí)間t(單位:s)的關(guān)系如圖2,則AC的長(zhǎng)為()
;A”叮
BC11.5s7
圖1圖2
A.B.7427C.17D.5出
2
3.(2023?黑龍江綏化?統(tǒng)考中考真題)如圖,在菱形ABCD中,,64=60°,AB=4,動(dòng)點(diǎn)M,N同時(shí)從A點(diǎn)
出發(fā),點(diǎn)M以每秒2個(gè)單位長(zhǎng)度沿折線A-3-C向終點(diǎn)C運(yùn)動(dòng);點(diǎn)N以每秒1個(gè)單位長(zhǎng)度沿線段AD向終點(diǎn)
。運(yùn)動(dòng),當(dāng)其中一點(diǎn)運(yùn)動(dòng)至終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為X秒,AAAW的面積為y個(gè)平方
單位,則下列正確表示y與無函數(shù)關(guān)系的圖象是()
B_____0
//
A
D
4.(2023?黑龍江齊齊哈爾?統(tǒng)考中考真題)如圖,在正方形ABC。中,AB=4,動(dòng)點(diǎn)M,N分別從點(diǎn)A,B
同時(shí)出發(fā),沿射線AB,射線的方向勻速運(yùn)動(dòng),且速度的大小相等,連接。暇,MN,ND.設(shè)點(diǎn)M運(yùn)
動(dòng)的路程為彳(。<*<4),ADMN的面積為S,下列圖像中能反映S與尤之間函數(shù)關(guān)系的是()
5.(2023?河南?統(tǒng)考中考真題)如圖1,點(diǎn)P從等邊三角形A3C的頂點(diǎn)A出發(fā),沿直線運(yùn)動(dòng)到三角形內(nèi)部一
點(diǎn),再從該點(diǎn)沿直線運(yùn)動(dòng)到頂點(diǎn)反設(shè)點(diǎn)尸運(yùn)動(dòng)的路程為無,—=y,圖2是點(diǎn)尸運(yùn)動(dòng)時(shí)y隨x變化的關(guān)
系圖象,則等邊三角形A3c的邊長(zhǎng)為()
A.6B.3C.473D.2G
6.(2023?四川樂山?統(tǒng)考中考真題)如圖,在平面直角坐標(biāo)系xQv中,直線y=-x-2與x軸、y軸分別交
于A、8兩點(diǎn),C、。是半徑為1的。。上兩動(dòng)點(diǎn),且cr>=血,尸為弦。的中點(diǎn).當(dāng)C、。兩點(diǎn)在圓上運(yùn)
7.(2023?河北?統(tǒng)考中考真題)如圖是一種軌道示意圖,其中ADC和ABC均為半圓,點(diǎn)M,A,C,N依次
在同一直線上,且AM=OV.現(xiàn)有兩個(gè)機(jī)器人(看成點(diǎn))分別從M,N兩點(diǎn)同時(shí)出發(fā),沿著軌道以大小相
同的速度勻速移動(dòng),其路線分別為AfOfCfN和NfCf33Af若移動(dòng)時(shí)間為x,兩個(gè)
機(jī)器人之間距離為》則y與x關(guān)系的圖象大致是()
8.(2023?江蘇蘇州?統(tǒng)考中考真題)如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(9,0),點(diǎn)C的坐標(biāo)為(0,3),
以O(shè)A,OC為邊作矩形OABC.動(dòng)點(diǎn)瓦尸分別從點(diǎn)O,B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿0A2C向終
點(diǎn)AC移動(dòng).當(dāng)移動(dòng)時(shí)間為4秒時(shí),ACEF的值為()
A.V10B.9MC.15D.30
9.(2023?山東濱州?統(tǒng)考中考真題)已知點(diǎn)尸是等邊AABC的邊BC上的一點(diǎn),若NAPC=104。,則在以線段
AP,BP,CP為邊的三角形中,最小內(nèi)角的大小為()
A.14°B.16°C.24°D.26°
10.(2023?甘肅武威?統(tǒng)考中考真題)如圖1,正方形A8CD的邊長(zhǎng)為4,E為8邊的中點(diǎn).動(dòng)點(diǎn)P從點(diǎn)A出
發(fā)沿f勻速運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)點(diǎn)尸的運(yùn)動(dòng)路程為X,線段PE的長(zhǎng)為y,y與X的函數(shù)圖
象如圖2所示,則點(diǎn)M的坐標(biāo)為()
A.(4,273)B.(4,4)C.(4,275)D.(4,5)
11.(2023?浙江紹興?統(tǒng)考中考真題)如圖,在AABC中,。是邊8C上的點(diǎn)(不與點(diǎn)反C重合).過點(diǎn)。作
交AC于點(diǎn)E;過點(diǎn)。作。/〃AC交A3于點(diǎn)b.N是線段即上的點(diǎn),BN=2NF;M是線段DE
上的點(diǎn),DM=2ME.若已知ACMN的面積,則一定能求出()
A.幾位話的面積B.VE)產(chǎn)的面積
C.ABQV的面積D.△DCE的面積
12.(2023?安徽?統(tǒng)考中考真題)如圖,E是線段A2上一點(diǎn),VADE和ABCE是位于直線A3同側(cè)的兩個(gè)等
邊三角形,點(diǎn)尸,尸分別是CRAB的中點(diǎn).若AB=4,則下列結(jié)論錯(cuò)誤的是()
A.R1+PB的最小值為36B.PE+尸尸的最小值為2不
C.ACDE周長(zhǎng)的最小值為6D.四邊形ABCD面積的最小值為36
二、填空題
13.(2023?四川達(dá)州?統(tǒng)考中考真題)在AABC中,AB=A6,NC=60。,在邊8C上有一點(diǎn)尸,且BP=gAC,
連接AP,則"的最小值為.
14.(2023?浙江寧波?統(tǒng)考中考真題)如圖,在Rt^ABC中,NC=90。,E為45邊上一點(diǎn),以AE為直徑的
半圓。與BC相切于點(diǎn)。,連接AD,BE=3、BD=3布.尸是邊上的動(dòng)點(diǎn),當(dāng)△位方為等腰三角形時(shí),
AP的長(zhǎng)為.
15.(2023?四川涼山?統(tǒng)考中考真題)如圖,邊長(zhǎng)為2的等邊AABC的兩個(gè)頂點(diǎn)AB分別在兩條射線OM、ON
上滑動(dòng),若OMLON,則OC的最大值是.
16.(2023?四川瀘州?統(tǒng)考中考真題)如圖,E,F是正方形ABCD的邊A3的三等分點(diǎn),尸是對(duì)角線AC上
AP
的動(dòng)點(diǎn),當(dāng)PE+PF取得最小值時(shí),正的值是
17.(2023?河南?統(tǒng)考中考真題)矩形A3CD中,M為對(duì)角線8。的中點(diǎn),點(diǎn)N在邊AD上,且AN=AB=1.當(dāng)
以點(diǎn)。,M,N為頂點(diǎn)的三角形是直角三角形時(shí),AD的長(zhǎng)為
18.(2023?湖南?統(tǒng)考中考真題)如圖,在矩形ABCD中,AB=2,AD=y/l,動(dòng)點(diǎn)尸在矩形的邊上沿
CfQfA運(yùn)動(dòng).當(dāng)點(diǎn)尸不與點(diǎn)4B重合時(shí),將AAB尸沿AP對(duì)折,得到連接CB',則在點(diǎn)P的
運(yùn)動(dòng)過程中,線段CB'的最小值為
19.(2023?廣西?統(tǒng)考中考真題)如圖,在邊長(zhǎng)為2的正方形A8CD中,E,尸分別是3C,CD上的動(dòng)點(diǎn),M,
N分別是所,的中點(diǎn),則時(shí)V的最大值為,
20.(2023?山東?統(tǒng)考中考真題)如圖,在四邊形ABCD中,ZABC=ZBAD=90°,AB=5,AD=4,AD<BC,
點(diǎn)E在線段BC上運(yùn)動(dòng),點(diǎn)尸在線段AE上,ZADF=ZBAE,則線段B尸的最小值為.
21.(2023?四川內(nèi)江?統(tǒng)考中考真題)出入相補(bǔ)原理是我國古代數(shù)學(xué)的重要成就之一,最早是由三國時(shí)期數(shù)
學(xué)家劉徽創(chuàng)建.“將一個(gè)幾何圖形,任意切成多塊小圖形,幾何圖形的總面積保持不變,等于所分割成的小
圖形的面積之和”是該原理的重要內(nèi)容之一、如圖,在矩形A3CD中,AB=5,AD=12,對(duì)角線AC與BD
交于點(diǎn)O,點(diǎn)E為2C邊上的一個(gè)動(dòng)點(diǎn),EFJ.AC,EGLBD,垂足分別為點(diǎn)F,G,則EF+EG=.
22.(2023?山東煙臺(tái)?統(tǒng)考中考真題)如圖1,在“LBC中,動(dòng)點(diǎn)尸從點(diǎn)A出發(fā)沿折線四一8CfC4勻速運(yùn)動(dòng)
至點(diǎn)A后停止.設(shè)點(diǎn)尸的運(yùn)動(dòng)路程為龍,線段AP的長(zhǎng)度為九圖2是>與無的函數(shù)關(guān)系的大致圖象,其中
點(diǎn)P為曲線DE的最低點(diǎn),則AABC的高CG的長(zhǎng)為.
圖1圖2
23.(2023?新疆?統(tǒng)考中考真題)如圖,在YABCD中,AB=6,BC=8,/ABC=120。,點(diǎn)E是AO上一動(dòng)
點(diǎn),將ATWE沿班1折疊得到AA'BE,當(dāng)點(diǎn)A恰好落在EC上時(shí),DE的長(zhǎng)為.
24.(2023?四川眉山?統(tǒng)考中考真題)如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)B的坐標(biāo)為(-8,6),過點(diǎn)B分別
作x軸、y軸的垂線,垂足分別為點(diǎn)C、點(diǎn)A,直線y=-2x-6與AB交于點(diǎn)。.與y軸交于點(diǎn)E.動(dòng)點(diǎn)M
在線段3c上,動(dòng)點(diǎn)N在直線y=-2x-6上,若AAMN是以點(diǎn)N為直角頂點(diǎn)的等腰直角三角形,則點(diǎn)〃的
坐標(biāo)為________
25.(2023?四川自貢?統(tǒng)考中考真題)如圖,直線y=-;x+2與x軸,y軸分別交于A,2兩點(diǎn),點(diǎn)D是線段
A8上一動(dòng)點(diǎn),點(diǎn)”是直線y=-gx+2上的一動(dòng)點(diǎn),動(dòng)點(diǎn)磯根,0),F(m+3,0),連接BE,DF,HD.當(dāng)
8E+D尸取最小值時(shí),3BH+5nH的最小值是.
三、解答題
26.(2023?重慶?統(tǒng)考中考真題)如圖,“1BC是邊長(zhǎng)為4的等邊三角形,動(dòng)點(diǎn)E,P分別以每秒1個(gè)單位長(zhǎng)
度的速度同時(shí)從點(diǎn)A出發(fā),點(diǎn)E沿折線Af3fC方向運(yùn)動(dòng),點(diǎn)F沿折線AfC-3方向運(yùn)動(dòng),當(dāng)兩者相
遇時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為/秒,點(diǎn)E,尸的距離為y.
⑴請(qǐng)直接寫出y關(guān)于t的函數(shù)表達(dá)式并注明自變量t的取值范圍;
(2)在給定的平面直角坐標(biāo)系中畫出這個(gè)函數(shù)的圖象,并寫出該函數(shù)的一條性質(zhì);
⑶結(jié)合函數(shù)圖象,寫出點(diǎn)E,F相距3個(gè)單位長(zhǎng)度時(shí)/的值.
27.(2023?遼寧大連?統(tǒng)考中考真題)如圖1,在平面直角坐標(biāo)系尤0y中,直線y=%與直線相交于點(diǎn)A,
P&0)為線段上一動(dòng)點(diǎn)(不與點(diǎn)8重合),過點(diǎn)P作尸D_Lx軸交直線BC于點(diǎn)£).AOR與△DP3的重疊
面積為S.S關(guān)于/的函數(shù)圖象如圖2所示.
(1)03的長(zhǎng)為.△OAB的面積為.
(2)求S關(guān)于f的函數(shù)解析式,并直接寫出自變量f的取值范圍.
28.(2023?河北?統(tǒng)考中考真題)在平面直角坐標(biāo)系中,設(shè)計(jì)了點(diǎn)的兩種移動(dòng)方式:從點(diǎn)(x,y)移動(dòng)到點(diǎn)
(x+2,y+l)稱為一次甲方式:從點(diǎn)(x,y)移動(dòng)到點(diǎn)(x+l,y+2)稱為一次乙方式.
例、點(diǎn)尸從原點(diǎn)。出發(fā)連續(xù)移動(dòng)2次;若都按甲方式,最終移動(dòng)到點(diǎn)”(4,2);若都按乙方式,最終移動(dòng)到
點(diǎn)N(2,4);若按1次甲方式和1次乙方式,最終移動(dòng)到點(diǎn)E(3,3).
03691215182124273033%
⑴設(shè)直線自經(jīng)過上例中的點(diǎn)M,N,求人的解析式;并申談寫出將4向上平移9個(gè)單位長(zhǎng)度得到的直線4的解
析式;
(2)點(diǎn)尸從原點(diǎn)。出發(fā)連續(xù)移動(dòng)10次,每次移動(dòng)按甲方式或乙方式,最終移動(dòng)到點(diǎn)Q(x,y).其中,按甲方式
移動(dòng)了初次.
①用含機(jī)的式子分別表示x,y;
②請(qǐng)說明:無論必怎樣變化,點(diǎn)。都在一條確定的直線上.設(shè)這條直線為4,在圖中直接畫出4的圖象;
(3)在(1)和(2)中的直線4,附4上分別有一個(gè)動(dòng)點(diǎn)A,8,C,橫坐標(biāo)依次為a,b,c,若A,B,C三點(diǎn)始終
在一條直線上,直接寫出此時(shí)a,b,c之間的關(guān)系式.
29.(2023?黑龍江?統(tǒng)考中考真題)如圖,在平面直角坐標(biāo)系中,菱形AOCB的邊OC在x軸上,ZAOC=60°,
OC的長(zhǎng)是一元二次方程/一4》-12=0的根,過點(diǎn)C作x軸的垂線,交對(duì)角線于點(diǎn)直線AD分別交
x軸和y軸于點(diǎn)尸和點(diǎn)E,動(dòng)點(diǎn)M從點(diǎn)。以每秒1個(gè)單位長(zhǎng)度的速度沿0。向終點(diǎn)。運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)尸
以每秒2個(gè)單位長(zhǎng)度的速度沿FE向終點(diǎn)£運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為f秒.
(1)求直線AD的解析式.
(2)連接MN,求的面積S與運(yùn)動(dòng)時(shí)間f的函數(shù)關(guān)系式.
(3)點(diǎn)N在運(yùn)動(dòng)的過程中,在坐標(biāo)平面內(nèi)是否存在一點(diǎn)。.使得以A,C,N,。為項(xiàng)點(diǎn)的四邊形是矩形.若
存在,直接寫出點(diǎn)。的坐標(biāo),若不存在,說明理由.
30.(2023?江蘇蘇州?統(tǒng)考中考真題)某動(dòng)力科學(xué)研究院實(shí)驗(yàn)基地內(nèi)裝有一段筆直的軌道AB,長(zhǎng)度為1m的
金屬滑塊在上面做往返滑動(dòng).如圖,滑塊首先沿A2方向從左向右勻速滑動(dòng),滑動(dòng)速度為9m/s,滑動(dòng)開始
前滑塊左端與點(diǎn)A重合,當(dāng)滑塊右端到達(dá)點(diǎn)8時(shí),滑塊停頓2s,然后再以小于9m/s的速度勻速返回,直到
滑塊的左端與點(diǎn)A重合,滑動(dòng)停止.設(shè)時(shí)間為《s)時(shí),滑塊左端離點(diǎn)A的距離為4(m),右端離點(diǎn)8的距離
為^m),記d=與/具有函數(shù)關(guān)系.己知滑塊在從左向右滑動(dòng)過程中,當(dāng)r=4.5s和5.5s時(shí),與之對(duì)
應(yīng)的d的兩個(gè)值互為相反數(shù);滑塊從點(diǎn)A出發(fā)到最后返回點(diǎn)A,整個(gè)過程總用時(shí)27s(含停頓時(shí)間).請(qǐng)你
根據(jù)所給條件解決下列問題:
⑴滑塊從點(diǎn)A到點(diǎn)8的滑動(dòng)過程中,d的值________________;(填“由負(fù)到正”或“由正到負(fù)”)
(2)滑塊從點(diǎn)B到點(diǎn)A的滑動(dòng)過程中,求d與/的函數(shù)表達(dá)式;
⑶在整個(gè)往返過程中,若d=18,求/的值.
31.(2023?天津?統(tǒng)考中考真題)在平面直角坐標(biāo)系中,。為原點(diǎn),菱形ABCD的頂點(diǎn)4(6,0),3(0,1),O(26,1),
矩形EFGH的頂點(diǎn)《0,?
(1)填空:如圖①,點(diǎn)C的坐標(biāo)為,點(diǎn)G的坐標(biāo)為;
(2)將矩形EFG”沿水平方向向右平移,得到矩形E'尸'G7T,點(diǎn)E,F,G,H的對(duì)應(yīng)點(diǎn)分別為V,尸,G,
H'.設(shè)EE'=f,矩形E'產(chǎn)此印與菱形ABCD重疊部分的面積為S.
①如圖②,當(dāng)邊EF與A2相交于點(diǎn)M、邊G7T與BC相交于點(diǎn)N,且矩形EFGTT與菱形ABCD重疊部分
為五邊形時(shí),試用含有f的式子表示S,并直接寫出t的取值范圍:
②當(dāng)2叵4/4兇時(shí),求S的取值范圍(直接寫出結(jié)果即可).
34
32.(2023?江西?統(tǒng)考中考真題)綜合與實(shí)踐
問題提出:某興趣小組開展綜合實(shí)踐活動(dòng):在Rt^ABC中,ZC=90°,。為AC上一點(diǎn),CD=也,動(dòng)點(diǎn)
P以每秒1個(gè)單位的速度從C點(diǎn)出發(fā),在三角形邊上沿Cf8fA勻速運(yùn)動(dòng),到達(dá)點(diǎn)A時(shí)停止,以。尸為
邊作正方形DPEF設(shè)點(diǎn)尸的運(yùn)動(dòng)時(shí)間為、,正方形DPEF的而積為S,探究S與f的關(guān)系
圖1圖2
(1)初步感知:如圖1,當(dāng)點(diǎn)尸由點(diǎn)C運(yùn)動(dòng)到點(diǎn)8時(shí),
①當(dāng)/=1時(shí),S=.
②S關(guān)于t的函數(shù)解析式為.
(2)當(dāng)點(diǎn)尸由點(diǎn)8運(yùn)動(dòng)到點(diǎn)A時(shí),經(jīng)探究發(fā)現(xiàn)S是關(guān)于f的二次函數(shù),并繪制成如圖2所示的圖象請(qǐng)根據(jù)圖
象信息,求S關(guān)于/的函數(shù)解析式及線段AB的長(zhǎng).
(3)延伸探究:若存在3個(gè)時(shí)刻。內(nèi)々(:<^<%)對(duì)應(yīng)的正方形DPEF的面積均相等.
①/j+=
②當(dāng)6=氣時(shí),求正方形DPEF的面積.
專題28動(dòng)點(diǎn)綜合問題(32題)
1.(2023?四川遂寧?統(tǒng)考中考真題)如圖,在AABC中,Afi=10,BC=6,AC=8,點(diǎn)尸為線段A3上的動(dòng)
點(diǎn),以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)A向點(diǎn)8移動(dòng),到達(dá)點(diǎn)B時(shí)停止.過點(diǎn)P作尸M,AC于點(diǎn)M、作PN±BC
于點(diǎn)N,連接MN,線段的長(zhǎng)度y與點(diǎn)尸的運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)關(guān)系如圖所示,則函數(shù)圖象最低點(diǎn)
E的坐標(biāo)為()
D.親
【分析】如圖所示,過點(diǎn)C作于。,連接CP,先利用勾股定理的逆定理證明AABC是直角三角形,
2432
即NC=90。,進(jìn)而利用等面積法求出CO=w,則可利用勾股定理求出AD=^;再證明四邊形CMPN是矩
2432
形,得到MN=CP,故當(dāng)點(diǎn)P與點(diǎn)。重合時(shí),CP最小,即最小,此時(shí)最小值為m,AP=^
3224
則點(diǎn)的坐標(biāo)為
ET'T
【詳解】解:如圖所示,過點(diǎn)C作CDLAB于。,連接CP,
:在AABC中,AB=W,BC=6,AC=8,
/.AC2+BC2=6?+8?=100=102=AB2,
"RC是直角三角形,即ZC=90°,
C.S^^ACBC^ABCD,
.“ACBC24
AB5
.??AD=^AC2-CD2=y;
?;PM_LAC,PN±BC,ZC=90°,
???四邊形CMPN是矩形,
:.MN=CP,
...當(dāng)MN最小時(shí),即CP最小,
2432
,當(dāng)點(diǎn)尸與點(diǎn)。重合時(shí),CP最小,即MN最小,此時(shí)最小值為m,AP=AD=—
3224
???點(diǎn)E的坐標(biāo)為
故選:C.
【點(diǎn)睛】本題主要考查了勾股定理和勾股定理的逆定理,矩形的性質(zhì)與判斷,垂線段最短,坐標(biāo)與圖形等
等,正確作出輔助線是解題的關(guān)鍵.
2.(2023?廣東深圳?統(tǒng)考中考真題)如圖1,在Rt^ABC中,動(dòng)點(diǎn)尸從A點(diǎn)運(yùn)動(dòng)到8點(diǎn)再到C點(diǎn)后停止,
速度為2單位/s,其中成長(zhǎng)與運(yùn)動(dòng)時(shí)間單位:s)的關(guān)系如圖2,則AC的長(zhǎng)為()
【答案】C
【分析】根據(jù)圖象可知/=0時(shí),點(diǎn)P與點(diǎn)A重合,得到AB=15,進(jìn)而求出點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B所需的時(shí)
間,進(jìn)而得到點(diǎn)尸從點(diǎn)8運(yùn)動(dòng)到點(diǎn)C的時(shí)間,求出的長(zhǎng),再利用勾股定理求出AC即可.
【詳解】解:由圖象可知:f=0時(shí),點(diǎn)尸與點(diǎn)A重合,
/.AB=15,
;.點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B所需的時(shí)間為15^2=7.5s;
點(diǎn)尸從點(diǎn)8運(yùn)動(dòng)到點(diǎn)C的時(shí)間為11.5-7.5=4s,
3c=2x4=8;
在RtZVLBC中:AC^yjAB2+BC2=17;
故選:C.
【點(diǎn)睛】本題考查動(dòng)點(diǎn)的函數(shù)圖象,勾股定理.從函數(shù)圖象中有效的獲取信息,求出的長(zhǎng),是解題
的關(guān)鍵.
3.(2023?黑龍江綏化?統(tǒng)考中考真題)如圖,在菱形ABCD中,NA=60。,AB=4,動(dòng)點(diǎn)",N同時(shí)從A點(diǎn)
出發(fā),點(diǎn)M以每秒2個(gè)單位長(zhǎng)度沿折線A-3-C向終點(diǎn)C運(yùn)動(dòng);點(diǎn)N以每秒1個(gè)單位長(zhǎng)度沿線段4。向終點(diǎn)
。運(yùn)動(dòng),當(dāng)其中一點(diǎn)運(yùn)動(dòng)至終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為%秒,AAW的面積為y個(gè)平方
單位,則下列正確表示》與無函數(shù)關(guān)系的圖象是()
【答案】A
【分析】連接3。,過點(diǎn)B作班,AD于點(diǎn)E,根據(jù)已知條件得出是等邊三角形,進(jìn)而證明
當(dāng)0</<4時(shí),M在AB上,當(dāng)44r<8時(shí),M在BC上,根據(jù)三
角形的面積公式得到函數(shù)關(guān)系式,
【詳解】解:如圖所示,連接3D,過點(diǎn)B作班,AD于點(diǎn)E,
當(dāng)0</<4時(shí),河在上,
菱形ABC。中,NA=60。,AB=4,
:.AB=AD,則是等邊三角形,
/.AE=ED=^AD=2,BE=6AE=26
*.*AM=2x,AN=x,
AMAB
6二族=2,又ZA=ZA
AAMNSABE
:.ZANM=ZAEB=90°
MN=4AM1-AN~=y/3x,
y=—xx^x=-x2
22
當(dāng)4V,<8時(shí),M在BC上,
y=—ANxBE=—xx2^3=乖)x,
綜上所述,0<f<4時(shí)的函數(shù)圖象是開口向上的拋物線的一部分,當(dāng)44r<8時(shí),函數(shù)圖象是直線的一部分,
故選:A.
【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,二次函數(shù)圖象的性質(zhì),一次函數(shù)圖象的性質(zhì),菱形的性質(zhì),勾
股定理,等邊三角形的性質(zhì)與判定,相似三角形的性質(zhì)與判定,熟練掌握以上知識(shí)是解題的關(guān)鍵.
4.(2023?黑龍江齊齊哈爾?統(tǒng)考中考真題)如圖,在正方形ABCD中,AB=4,動(dòng)點(diǎn)M,N分別從點(diǎn)A,B
同時(shí)出發(fā),沿射線A2,射線BC的方向勻速運(yùn)動(dòng),且速度的大小相等,連接DM,MN,ND.設(shè)點(diǎn)M運(yùn)
動(dòng)的路程為x(O<x<4),ADMN的面積為S,下列圖像中能反映S與x之間函數(shù)關(guān)系的是()
N
BC
SA
107^
8乙一1
D.
O4""x
【分析】先根據(jù)S=S正方形45CD-SVAOM-Sv℃N-SVBMN,求出S與工之間函數(shù)關(guān)系式,再判斷即可得出結(jié)論.
【詳解】解:S=S正方形488-SVADM-SVDCN-S^BMN,
=4x4-gx4x-gx4(4一x)一;%(4一%),
17
=—x—2%+8,
2
1
=-(X-2)912+6,
2
故S與x之間函數(shù)關(guān)系為二次函數(shù),圖像開口向上,x=2時(shí),函數(shù)有最小值6,
故選:A.
【點(diǎn)睛】本題考查了正方形的性質(zhì),二次函數(shù)的圖像與性質(zhì),本題的關(guān)鍵是求出S與x之間函數(shù)關(guān)系式,再
判斷S與x之間函數(shù)類型.
5.(2023?河南?統(tǒng)考中考真題)如圖1,點(diǎn)尸從等邊三角形ABC的頂點(diǎn)A出發(fā),沿直線運(yùn)動(dòng)到三角形內(nèi)部一
點(diǎn),再從該點(diǎn)沿直線運(yùn)動(dòng)到頂點(diǎn)設(shè)點(diǎn)尸運(yùn)動(dòng)的路程為心器=,圖2是點(diǎn)尸運(yùn)動(dòng)時(shí)y隨尤變化的關(guān)
系圖象,則等邊三角形ABC的邊長(zhǎng)為()
圖1圖2
A.6B.3C.4A/3D.2A/3
【答案】A
【分析】如圖,令點(diǎn)P從頂點(diǎn)A出發(fā),沿直線運(yùn)動(dòng)到三角形內(nèi)部一點(diǎn)。,再從點(diǎn)。沿直線運(yùn)動(dòng)到頂點(diǎn)5.結(jié)
合圖象可知,當(dāng)點(diǎn)P在40上運(yùn)動(dòng)時(shí),PB=PC,A0=25易知NB4O=NC4O=30。,當(dāng)點(diǎn)P在上
運(yùn)動(dòng)時(shí),可知點(diǎn)P到達(dá)點(diǎn)8時(shí)的路程為4百,可知AO=OB=2石,過點(diǎn)。作解直角三角形可得
AD=AOcos30°=3,進(jìn)而可求得等邊三角形ABC的邊長(zhǎng).
【詳解】解:如圖,令點(diǎn)P從頂點(diǎn)A出發(fā),沿直線運(yùn)動(dòng)到三角形內(nèi)部一點(diǎn)0,再從點(diǎn)。沿直線運(yùn)動(dòng)到頂點(diǎn)8.
PB
結(jié)合圖象可知,當(dāng)點(diǎn)P在A0上運(yùn)動(dòng)時(shí),—=1,
/.PB=PC,AO=26,
又,:AABC為等邊三角形,
AZfi4C=60°,AB=AC,
:.AAPB四△APC(SSS),
ZBAO=ZCAO,
:.ZBAO=ZCAO=30°,
當(dāng)點(diǎn)P在。8上運(yùn)動(dòng)時(shí),可知點(diǎn)P到達(dá)點(diǎn)B時(shí)的路程為4A/3,
.,.08=26即AO=OB=25
ZBAO=ZABO=30°,
過點(diǎn)。作ODLAB,
:.AD=BD,貝?。軦P=AO-cos30°=3,
AB=AD+BD=6,
即:等邊三角形ABC的邊長(zhǎng)為6,
故選:A.
【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,解決本題的關(guān)鍵是綜合利用圖象和圖形給出的條件.
6.(2023?四川樂山?統(tǒng)考中考真題)如圖,在平面直角坐標(biāo)系xOy中,直線y=-x-2與x軸、y軸分別交
于A、8兩點(diǎn),C、。是半徑為1的。。上兩動(dòng)點(diǎn),且C£>=&,尸為弦的中點(diǎn).當(dāng)C、。兩點(diǎn)在圓上運(yùn)
動(dòng)時(shí),ARAB面積的最大值是()
A.8B.6C.4D.3
【答案】D
【分析】根據(jù)一次函數(shù)與坐標(biāo)軸的交點(diǎn)得出3=08=2,確定AB=2應(yīng),再由題意得出當(dāng)P0的延長(zhǎng)線恰
好垂直A3時(shí),垂足為點(diǎn)E,此時(shí)PE即為三角形的最大高,連接利用勾股定理求解即可.
【詳解】解:.??直線y=-矛-2與x軸、y軸分別交于A、B兩點(diǎn),
.?.當(dāng)x=0時(shí),y=-2,當(dāng)y=0時(shí),x=-2,
A(-2,0),B(0,-2),
OA=OB=2,
AB=V(M2+OB2=2A/2-
■:APAB的底邊AB=272為定值,
.,?使得AE4B底邊上的高最大時(shí),面積最大,
點(diǎn)P為8的中點(diǎn),當(dāng)尸。的延長(zhǎng)線恰好垂直AB時(shí),垂足為點(diǎn)E,此時(shí)PE即為三角形的最大高,連接。0,
CD=72,。。的半徑為1,
/.DP=—
2
OP=ylOD2-DP2=—,
2
?/OELAB,
OE=LAB=啦,
2
PE=OE+OP=^^,
2
SJAB=gx20x^^=3,
故選:D.
【點(diǎn)睛】題目主要考查一次函數(shù)的應(yīng)用及勾股定理解三角形,垂徑定理的應(yīng)用,理解題意,確定出高的最
大值是解題關(guān)鍵.
7.(2023?河北?統(tǒng)考中考真題)如圖是一種軌道示意圖,其中ADC和ABC均為半圓,點(diǎn)M,A,C,N依次
在同一直線上,且AM=OV.現(xiàn)有兩個(gè)機(jī)器人(看成點(diǎn))分別從M,N兩點(diǎn)同時(shí)出發(fā),沿著軌道以大小相
同的速度勻速移動(dòng),其路線分別為A—DfCfN和NfCf若移動(dòng)時(shí)間為x,兩個(gè)
機(jī)器人之間距離為》則y與x關(guān)系的圖象大致是()
【答案】D
【分析】設(shè)圓的半徑為R,根據(jù)機(jī)器人移動(dòng)時(shí)最開始的距離為AV+OV+2R,之后同時(shí)到達(dá)點(diǎn)A,C,兩個(gè)
機(jī)器人之間的距離y越來越小,當(dāng)兩個(gè)機(jī)器人分別沿AfD-C和。-8fA移動(dòng)時(shí),此時(shí)兩個(gè)機(jī)器人之
間的距離是直徑2尺,當(dāng)機(jī)器人分別沿CfN和移動(dòng)時(shí),此時(shí)兩個(gè)機(jī)器人之間的距離越來越大.
【詳解】解:由題意可得:機(jī)器人(看成點(diǎn))分別從M,N兩點(diǎn)同時(shí)出發(fā),
設(shè)圓的半徑為R,
兩個(gè)機(jī)器人最初的距離是AM+CN+2R,
:兩個(gè)人機(jī)器人速度相同,
.,?分別同時(shí)到達(dá)點(diǎn)A,C,
...兩個(gè)機(jī)器人之間的距離y越來越小,故排除A,C;
當(dāng)兩個(gè)機(jī)器人分別沿A-D-C和CfA移動(dòng)時(shí),此時(shí)兩個(gè)機(jī)器人之間的距離是直徑2R,保持不變,
當(dāng)機(jī)器人分別沿CfN和AfM移動(dòng)時(shí),此時(shí)兩個(gè)機(jī)器人之間的距離越來越大,故排除C,
故選:D.
【點(diǎn)睛】本題考查動(dòng)點(diǎn)函數(shù)圖像,找到運(yùn)動(dòng)時(shí)的特殊點(diǎn)用排除法是關(guān)鍵.
8.(2023?江蘇蘇州?統(tǒng)考中考真題)如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(9,0),點(diǎn)C的坐標(biāo)為(0,3),
以O(shè)AOC為邊作矩形Q4BC.動(dòng)點(diǎn)瓦尸分別從點(diǎn)同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿0ABe向終
點(diǎn)AC移動(dòng).當(dāng)移動(dòng)時(shí)間為4秒時(shí),ACEF的值為()
A.VioB.9MC.15D.30
【答案】D
【分析】根據(jù)題意,得出E(4,0),尸(5,3),勾股定理求得跖=布,AC=3V10,即可求解.
【詳解】解:連接AC、EF
:點(diǎn)A的坐標(biāo)為(9,0),點(diǎn)C的坐標(biāo)為(。,3),以O(shè)AOC為邊作矩形QASC.
,3(9,3),AC=V32+92=3A/10
則OA=9,BC=OA=9
依題意,OE=4xl=4,BF=4x1=4
,AE=9-4=5,則E(4,0),
CF=BC-BF=9-4=5
:.F(5,3),
/.EF=^(5-4)2+32=^,
VC(0,3),
AC?EF=3A/10xJ10=30
故選:D.
【點(diǎn)睛】本題考查了坐標(biāo)與圖形,勾股定理求兩點(diǎn)坐標(biāo)距離,矩形的性質(zhì),求得瓦尸的坐標(biāo)是解題的關(guān)鍵.
9.(2023?山東濱州?統(tǒng)考中考真題)已知點(diǎn)P是等邊的邊8C上的一點(diǎn),若NAPC=104。,則在以線段
尸為邊的三角形中,最小內(nèi)角的大小為()
A.14°B.16°C.24°D.26°
【答案】B
【分析】將AAB尸繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60。得到AACQ,可得以線段AP,BP,CP為邊的三角形,即△PCQ,最
小的銳角為NPQC,根據(jù)鄰補(bǔ)角以及旋轉(zhuǎn)的性質(zhì)得出NAQC=NAP8=76。,進(jìn)而即可求解.
【詳解】解:如圖所示,將AAB尸繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60。得到AACQ,
/.AP=AQ,ZPAQ=60°,BP=CQ,ZAQC=ZAPB,
???△A尸。是等邊三角形,
,PQ=AP,
,以線段AP,BP,CP為邊的三角形,即△PCQ,最小的銳角為NPQC,
ZAPC=104°,
...ZAPS=76°
ZAQC=ZAPB=16°
:.ZPgC=76°-60°=16°,
故選:B.
【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì)與判定,熟練掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.
10.(2023?甘肅武威?統(tǒng)考中考真題)如圖1,正方形ABCD的邊長(zhǎng)為4,E為CO邊的中點(diǎn).動(dòng)點(diǎn)尸從點(diǎn)A出
發(fā)沿ABfBC勻速運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)點(diǎn)P的運(yùn)動(dòng)路程為X,線段PE的長(zhǎng)為y,y與X的函數(shù)圖
象如圖2所示,則點(diǎn)M的坐標(biāo)為()
A.(4,273)B.(4,4)C.(4,2君)D.(4,5)
【答案】C
【分析】證明AB=8C=CD=AD=4,NC=ZD=90。,CE=DE=2,則當(dāng)P與A,B重合時(shí),PE最長(zhǎng),
此時(shí)PE=+4?=2#>,而運(yùn)動(dòng)路程為?;?,從而可得答案.
【詳解】解::正方形A3CE)的邊長(zhǎng)為4,E為CD邊的中點(diǎn),
/.AB^BC=CD^AD^4,"="=90。,CE=DE=2,
當(dāng)P與A,8重合時(shí),PE最長(zhǎng),
止匕時(shí)PE=A/22+42=275,
運(yùn)動(dòng)路程為。或4,
結(jié)合函數(shù)圖象可得加卜,2石),
故選:C.
【點(diǎn)睛】本題考查的是從函數(shù)圖象中獲取信息,正方形的性質(zhì),勾股定理的應(yīng)用,理解題意,確定函數(shù)圖
象上橫縱坐標(biāo)的含義是解本題的關(guān)鍵.
11.(2023?浙江紹興?統(tǒng)考中考真題)如圖,在“WC中,。是邊8C上的點(diǎn)(不與點(diǎn)反C重合).過點(diǎn)。作
交AC于點(diǎn)E;過點(diǎn)。作小〃4。交A3于點(diǎn)b.N是線段上的點(diǎn),BN=2NF;M是線段DE
上的點(diǎn),DM=2ME.若已知ACMN的面積,則一定能求出()
A.△AFE的面積B.V&)尸的面積
C.ABCIV的面積D.△DCE的面積
【答案】D
FBFDNFBFFDNF
【分析】如圖所示,連接ND,證明AEBDSA即。,得出受=帙,由已知得出黑=箸,則仁=黑,
EDECMEDEECME
又ZNFD=/MEC,則小NFIAAMEC,進(jìn)而得出NMCD=NND3,可得結(jié)合題意得出
S^EMC=5S4DMC=5SAMNC,即可求解.
【詳解】解:如圖所示,連接ND,
?:DE〃AB,DF//AC,
:./ECD=/FDB,/FBD=ZEDC,ZBFD=NA,NA=DEC.
???AFBD^EDC,ZNFD=ZMEC.
.FBFD
9ED~EC
?:DM=2ME,BN=2NF,
NF=;BF,ME=gDE,
.NFBF
??標(biāo)一方.
.FDNF
又*:ZNFD=/MEC,
:?ANFD^AMEC.
???ZECM=ZFDN.
■:/FDB=/ECD
:.ZMCD=ZNDB.
:,MC〃ND.
?
,,"&qMNC.-°qAMDC?
?;DM=2ME,
??S^EMC=jSGMC=萬S1MNC?
故選:D.
【點(diǎn)睛】本題考查了相似三角形的性質(zhì)與判定,證明是解題的關(guān)鍵.
12.(2023?安徽?統(tǒng)考中考真題)如圖,E是線段A2上一點(diǎn),VADE和ABCE是位于直線A3同側(cè)的兩個(gè)等
邊三角形,點(diǎn)尸,尸分別是CRAB的中點(diǎn).若AB=4,則下列結(jié)論埼誤的是()
A.9+PB的最小值為3百B.PE+尸尸的最小值為2石
C.ACDE周長(zhǎng)的最小值為6D.四邊形ABCD面積的最小值為3K
【答案】A
【分析】延長(zhǎng)AD,BC,貝IJAABQ是等邊三角形,觀察選項(xiàng)都是求最小時(shí),進(jìn)而得出當(dāng)E點(diǎn)與b重合時(shí),則
Q,尸,尸三點(diǎn)共線,各項(xiàng)都取得最小值,得出B,C,D選項(xiàng)正確,即可求解.
【詳解】解:如圖所示,
延長(zhǎng)A£),5C,
依題意NQAD=ZQBA=60°
???△ABQ是等邊三角形,
??,尸是8的中點(diǎn),
:.PD=PC,
丁ZDEA=ZCBA,
:.ED//CQ
:.ZPQC=/PED,ZPCQ=ZPDE,
4PDE'PCQ
??.PQ=PE,
???四邊形。EC。是平行四邊形,
則尸為的中點(diǎn)
如圖所示,
設(shè)AQ/Q的中點(diǎn)分別為G,H,
則尸
22
,當(dāng)E點(diǎn)在AB上運(yùn)動(dòng)時(shí),尸在G”上運(yùn)動(dòng),
當(dāng)E點(diǎn)與尸重合時(shí),即AE=EB,
則。,尸,三點(diǎn)共線,尸廠取得最小值,止匕時(shí)A£=£B=;(AE+E3)=2,
則ZW?四△ECB,
...CD到AB的距離相等,
則CD〃A3,
此時(shí)尸尸=—AD=y/3
2
此時(shí)V43E和ABCE的邊長(zhǎng)都為2,則AP,尸2最小,
PF=—x2=^,
2
PA=PB=J22+(V3)2=6
:.PA+PB=2/,
或者如圖所示,作點(diǎn)8關(guān)于GH對(duì)稱點(diǎn)E,則=則當(dāng)AP,2'三點(diǎn)共線時(shí),AP+PB=AB'
AEFB
此時(shí)AB'=slAB2+BB'=J?+(2百『=2幣
故A選項(xiàng)錯(cuò)誤,
根據(jù)題意可得尸,。,尸三點(diǎn)共線時(shí),最小,此時(shí)上£=尸尸=百,則尸E+尸尸=2岔,故B選項(xiàng)正確;
^CDE^^z^CD+DE+CE=CD+AE+EB^CD+AB=CD+4,
即當(dāng)CD最小時(shí),ACDE周長(zhǎng)最小,
如圖所示,作平行四邊形GDMH,連接CN,
:NGHQ=6Q°,ZGHM=ZGDM=60°,則ZCHM=120°
如圖,延長(zhǎng)。E,龐,交于點(diǎn)N,
則NNGO=/QG"=60。,ZNDG=ZADE=6f)°
:.△NGQ是等邊三角形,
:,ND=GD=HM,
在ANPD與AHPC中,
ZNPD=ZHPC
</N=/CHP=62。
PD=PC
???△NPD^HPC
:.ND=CH
:.CH=MH
:.ZHCM=ZHMC=30°
CM//QF,則CM_LOM,
???△DMC是直角三角形,
在LDCM中,DC>DM
,當(dāng)。C=DM時(shí),0c最短,DC=GH^AB=2
;CD=PC+2PC
.?.△CDE周長(zhǎng)的最小值為2+2+2=6,故C選項(xiàng)正確;
?:ANPD^AHPC
+
四邊形ABC。面積等于2ADE+SSBC+SQEC=S4ABE§平行四邊NEBH
...當(dāng)△BGD的面積為。時(shí),取得最小值,此時(shí),2G重合,C,〃重合
,四邊形ABCD面積的最小值為3*q、22=3#),故D選項(xiàng)正確,
故選:A.
【點(diǎn)睛】本題考查了解直角三角形,等邊三角形的性質(zhì),勾股定理,熟練掌握等邊三角形的性質(zhì),得出當(dāng)E
點(diǎn)與F重合時(shí)得出最小值是解題的關(guān)鍵.
二、填空題
13.(2023?四川達(dá)州?統(tǒng)考中考真題)在AABC中,AB=46,NC=6O。,在邊3C上有一點(diǎn)P,且8尸=;AC,
連接AP,則AP的最小值為.
【答案】2岳-2
【分析】如圖,作AABC的外接圓,圓心為M,連接AM、過M作于。,過B作3NLAB,
交族的垂直平分線于N,連接AN、BN、PN,以N為圓心,BN(PN)為半徑作圓;結(jié)合圓周角定理及垂
徑定理易得A〃=E0=CM=4,再通過圓周角定理、垂直及垂直平分線的性質(zhì)、三角形內(nèi)角和定理易得
ZAMC=ZPNB,從而易證可得要==即RV=:CM=2勾股定理即可求得AN=2jF在
rNPB12
△APN中由三角形三邊關(guān)系即可求解.
【詳解】解:如圖,作AABC的外接圓,圓心為連接AM、BM、CM,過M作于。,過B
作交3尸的垂直平分線于N,連接4V、BN、PN,以N為圓心,BN(PN)為半徑作圓;
VZC=60°,M為AABC的外接圓的圓心,
:.ZAMB=120°,AM=BM,
:.ZMAB=ZMBA=3O°,
:.MD=-AM,
2
.MD上AB,
AD=-AB=2y/3,
2
在Rt/XADAf中,
AM2=MD2+AD1
.-.AM2=QAM^|+(2可,
:.AM=4,
^AM=BM=CM=4,
由作圖可知BN_LAB,N在成的垂直平分線上,
:.ZPBN=ZBPN=900-ZABC,
ZPNB=180。一(NP3N+ZBPN)=2ZABC,
又為人45。的外接圓的圓心,
:.ZAMC=2ZABC,
.\ZAMC=ZPNB,
CMAM
?P/V-B2V,
:.^AMC?*NB,
.CMAC
'PN~PB1
???BP=-AC,
2
.CM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 南京工業(yè)大學(xué)浦江學(xué)院《圖形與標(biāo)志設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷
- 非特異性免疫說課稿
- 深圳市萬豪御景苑施工組織設(shè)計(jì)
- 南京工業(yè)大學(xué)浦江學(xué)院《企業(yè)家精神》2022-2023學(xué)年第一學(xué)期期末試卷
- 【初中化學(xué)】化學(xué)反應(yīng)的定量關(guān)系單元綜合題-2024-2025學(xué)年九年級(jí)化學(xué)人教版上冊(cè)
- 南京工業(yè)大學(xué)浦江學(xué)院《公益組織內(nèi)部治理和戰(zhàn)略管理》2022-2023學(xué)年第一學(xué)期期末試卷
- 精神科責(zé)任自負(fù)協(xié)議書(2篇)
- 南京工業(yè)大學(xué)《有機(jī)波譜分析》2022-2023學(xué)年第一學(xué)期期末試卷
- 南京工業(yè)大學(xué)《無機(jī)非金屬材料工學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 教育4-5歲幼兒尊重并接納不同群體的實(shí)施方案
- 2024年重慶市高考物理試卷(含答案解析)
- 2019新人教版高中生物選擇性必修二全冊(cè)重點(diǎn)知識(shí)點(diǎn)歸納總結(jié)
- 2023版國開電大本科《高級(jí)財(cái)務(wù)會(huì)計(jì)》在線形考(任務(wù)一至四)試題及答案
- 工業(yè)互聯(lián)網(wǎng)安全技術(shù) 課件全套 魏旻 第1-9章 緒論、工業(yè)互聯(lián)網(wǎng)安全體系架構(gòu) -工業(yè)互聯(lián)網(wǎng)安全測(cè)試
- 痛風(fēng)病完整課件
- 湖北漢江王甫洲水力發(fā)電限責(zé)任公司公開招聘工作人員【6人】高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 慢性阻塞性肺疾病案例分析護(hù)理
- 孤殘兒童護(hù)理理論知識(shí)考試題庫及答案
- 2024年興業(yè)銀行股份有限公司校園招聘考試試題及參考答案
- 2024年計(jì)算機(jī)軟考(初級(jí))網(wǎng)絡(luò)管理員考試題庫大全(含真題等)
- 北師大版三年級(jí)數(shù)學(xué)上冊(cè)第六單元《乘法》(大單元教學(xué)設(shè)計(jì))
評(píng)論
0/150
提交評(píng)論