人教B版高中數(shù)學必修第一冊第二章等式與不等式2.2.2不等式的解集課件_第1頁
人教B版高中數(shù)學必修第一冊第二章等式與不等式2.2.2不等式的解集課件_第2頁
人教B版高中數(shù)學必修第一冊第二章等式與不等式2.2.2不等式的解集課件_第3頁
人教B版高中數(shù)學必修第一冊第二章等式與不等式2.2.2不等式的解集課件_第4頁
人教B版高中數(shù)學必修第一冊第二章等式與不等式2.2.2不等式的解集課件_第5頁
已閱讀5頁,還剩41頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2.2.2不等式的解集【課程標準】掌握不等式的解集,理解絕對值不等式,會解簡單的不等式組.教

點知識點一不等式的解集與不等式組的解集一般地,不等式的所有解組成的集合稱為不等式的解集.對于由若干個不等式聯(lián)立得到的不等式組來說,這些不等式的解集的交集稱為不等式組的解集.知識點二絕對值不等式的幾何意義(1)數(shù)軸上兩點之間的距離公式:數(shù)軸上兩點A(a),B(b)之間的距離AB=________.(2)數(shù)軸上兩點的中點坐標公式:數(shù)軸上兩點A(a),B(b)的中點坐標x=________.(3)絕對值不等式的幾何意義不等式(m>0)解集的幾何意義|x|<m數(shù)軸上與原點的距離________m的所有數(shù)的集合|x|>m數(shù)軸上與原點的距離________m的所有數(shù)的集合|x-b|<m數(shù)軸上與表示b的點的距離小于m的所有數(shù)的集合|x-b|>m數(shù)軸上與表示b的點的距離大于m的所有數(shù)的集合|a-b|

小于大于知識點三絕對值不等式及其解法(1)絕對值不等式的定義:含有絕對值的不等式.(2)絕對值不等式的解集.(3)|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法①|(zhì)ax+b|≤c?-c≤ax+b≤c.②|ax+b|≥c?ax+b≥c或ax+b≤-c.不等式(m>0)不等式的解集|x|<m{x|-m<x<m}|x|>m{x|x>m或x<-m}基

測1.在數(shù)軸上從點A(-2)引一線段到B(1),再同向延長同樣的長度到C,則點C的坐標為(

)A.13

B.0C.4

D.-2答案:C解析:根據(jù)數(shù)軸標好相應的點易判斷.

答案:A

3.不等式|x+1|<5的解集為___________.4.求不等式|x+2|+|x-1|<5的解集.{x|-6<x<4}解析:|x+1|<5?-5<x+1<5?-6<x<4.

答案:分別求出各不等式的解集,再求出各個解集的交集,并在數(shù)軸上表示出來即可.①解不等式2x+3>1,得x>-1,解不等式x-2<0,得x<2,則不等式組的解集為{x|-1<x<2}.將解集表示在數(shù)軸上如下:

(2)求關于x的不等式的解集:①2x+a>0;②ax>1.

方法歸納一元一次不等式組的求解策略(1)解不等式常用到的不等式的性質(zhì)性質(zhì)1

a>b?a+c>b+c性質(zhì)2

a>b,c>0?ac>bc性質(zhì)3

a>b,c<0?ac<bc推論a+b>c?a>c-b(2)解不等式(組)的注意點①移項要改變項的符號.②利用性質(zhì)3時要改變不等號的方向.③不等式組的解集是構(gòu)成不等式組的各個不等式解集的交集.

答案:A

(2)已知不等式ax-1>x+2的解集為(2,+∞),求a的值.

題型2解絕對值不等式例2求下列絕對值不等式的解集:(1)|3x-1|≤6;(2)3≤|x-2|<4.

方法歸納1.絕對值不等式的解題策略:等價轉(zhuǎn)化法(1)形如|x|<a,|x|>a(a>0)型不等式:|x|<a?-a<x<a.|x|>a?x>a或x<-a.(2)形如a<|x|<b(b>a>0)型不等式:a<|x|<b(0<a<b)?a<x<b或-b<x<-a.2.解絕對值不等式的基本步驟(1)去絕對值號,進行等價轉(zhuǎn)化;(2)解不含絕對值號的不等式.跟蹤訓練2

解不等式:1<|x-2|≤3.

例3解下列不等式:(1)|x-1|>|2x-3|;

(2)|x-1|+|x-2|>2.

答案:A

題型3數(shù)軸上的基本公式及應用[經(jīng)典例題]例4已知數(shù)軸上的三點A,B,P的坐標分別為A(-1),B(3),P(x).(1)點P到A,B兩點的距離都是2時,求P(x),此時P與線段AB是什么關系?

(2)在線段AB上是否存在一點P(x),使得P到A和B的距離都是3?若存在,求P(x),若不存在,請說明理由.答案:不存在這樣的P(x),理由如下:∵|AB|=|3-(-1)|=4<6,∴在線段AB上找一點P使|PA|+|PB|=3+3=6是不可能的.方法歸納數(shù)軸上基本公式的應用(1)已知數(shù)軸上兩點的坐標可用兩點間的距離公式求距離,若已知兩點間的距離,也可用距離公式求相應點的坐標;(2)中點坐標公式可以解決三點共線問題.其中已知兩點坐標,可用公式求第三點的坐標.跟蹤訓練4

已知數(shù)軸上三點P(-8),Q(m),R(2).若PQ的中點到線段PR中點的距離大于1,求實數(shù)m的取值范圍.

練1.若關于x的不等式|x+1|+|x-3|≤|a|存在實數(shù)解,則實數(shù)a的取值范圍是_____________________.

答案:C

答案:A

答案:D

答案:ABD

二、填空題(每小題5分,共15分)5.(5分)若點P(1-m,-2m-4)在第四象限,且m為整數(shù),則m=________.-1,0

6.(5分)設數(shù)軸上點A與數(shù)3對應,點B與數(shù)x對應,已知線段AB的中點到原點的距離不大于5,則x的取值范圍為________________.[-13,7]

35

8.(10分)解下列不等式:(1)|2x+5|<7;答案:原不等式等價于-7<2x+5<7.所以-12<2x<2,所以-6<x<1,所以原不等式的解集為(-6,1).(2)2≤|x-2|≤4.

9.(17分)求下列不等式的解集:(1)|x-1|+|x-2|<5;答案:∵|x-1|+|x-2|<5,當x<1時,原不等式可化為1-x+2-x<5,解得-1<x<1;當1≤x≤2時,原不等式化為x-1+2-x<5,解得1≤x≤2;當x>2時,原不等式化為x-1+x-2<5,解得2<x<4.綜上,原不等式的解集為(-1,4).(2)|x-1|+|x-2|≥3;答案:∵|x-1|+|x-2|≥3,當x<1時,原不等式可化為1-x+2-x≥3,解得x≤0;當1≤x≤2時,原不等式化為x-1+2-x≥3,即1≥3,解得x∈?;當x>2時,原不等式化為x-1+x-2≥3,解得x≥3.綜上,可得原不等式的解集為(-∞,0]∪[3,+∞).

[尖子生題庫]10.(17分)[2024·河南鄭州一中月考]已知函數(shù)f(x)=|x+a|+|x-2|.(1)當a=-3時,求不等式f(x)≥3的解集;答案:當a=-3時,f(x)=|x-3|+|x-2|,當x≥3時,f(x)≥3,即為x-3+x-2≥3,解得x≥4;當x≤2時,f(x)≥3,即為3-x+2-x≥3,解得x≤1;當2<x<3時,f(x)≥3,即為3-x+x-2≥3,無解.綜上可得,f(x)≤3的解集為[4,+∞)∪(-∞,1].(2)若不等式f(x)≤|x-4|在[1,2]上恒成立,求實數(shù)a的取值范圍.答案:若f(x)≤|x-4|在[1,2]上恒成立,可得|x+a|+|x-2|≤|x-4|在[1,2]上恒成立,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論