2024屆福建省永春華僑中學(xué)高三二模試題數(shù)學(xué)試題試卷_第1頁
2024屆福建省永春華僑中學(xué)高三二模試題數(shù)學(xué)試題試卷_第2頁
2024屆福建省永春華僑中學(xué)高三二模試題數(shù)學(xué)試題試卷_第3頁
2024屆福建省永春華僑中學(xué)高三二模試題數(shù)學(xué)試題試卷_第4頁
2024屆福建省永春華僑中學(xué)高三二模試題數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023屆福建省永春華僑中學(xué)高三二模試題數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計(jì)如圖中的條形圖,已知年的就醫(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,則該人年的儲畜費(fèi)用為()A.元 B.元 C.元 D.元2.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.3.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.4.已知函數(shù),若函數(shù)的圖象恒在軸的上方,則實(shí)數(shù)的取值范圍為()A. B. C. D.5.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.7.如圖,已知平面,,、是直線上的兩點(diǎn),、是平面內(nèi)的兩點(diǎn),且,,,,.是平面上的一動點(diǎn),且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.8.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.9.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.10.已知函數(shù),若,且,則的取值范圍為()A. B. C. D.11.已知是球的球面上兩點(diǎn),,為該球面上的動點(diǎn).若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.12.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知中,點(diǎn)是邊的中點(diǎn),的面積為,則線段的取值范圍是__________.14.如圖,已知扇形的半徑為1,面積為,則_____.15.若實(shí)數(shù)滿足約束條件,設(shè)的最大值與最小值分別為,則_____.16.已知為拋物線:的焦點(diǎn),過作兩條互相垂直的直線,,直線與交于、兩點(diǎn),直線與交于、兩點(diǎn),則的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,求曲線在點(diǎn)的切線方程;(2)討論函數(shù)的單調(diào)性.18.(12分)某機(jī)構(gòu)組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習(xí)慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對其排序,然后由家長猜測小孩的排序結(jié)果.設(shè)小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數(shù)字的一種排列.定義隨機(jī)變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習(xí)慣的了解程度.(1)若參與游戲的家長對小孩的飲食習(xí)慣完全不了解.(?。┣笏麄冊谝惠営螒蛑校瑢λ姆N食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細(xì)計(jì)算過程);(2)若有一組小孩和家長進(jìn)行來三輪游戲,三輪的結(jié)果都滿足X<4,請判斷這位家長對小孩飲食習(xí)慣是否了解,說明理由.19.(12分)已知函數(shù),其中為自然對數(shù)的底數(shù).(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求的取值范圍;(2)若函數(shù)在區(qū)間上恰有3個零點(diǎn),且,求的取值范圍.20.(12分)設(shè)等差數(shù)列的首項(xiàng)為0,公差為a,;等差數(shù)列的首項(xiàng)為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設(shè),,請計(jì)算,,;(2)設(shè),,試求,的表達(dá)式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設(shè),,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.21.(12分)已知函數(shù),.(1)若,,求實(shí)數(shù)的值.(2)若,,求正實(shí)數(shù)的取值范圍.22.(10分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個整數(shù),求實(shí)數(shù)k的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

根據(jù)2018年的家庭總收人為元,且就醫(yī)費(fèi)用占得到就醫(yī)費(fèi)用,再根據(jù)年的就醫(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,得到年的就醫(yī)費(fèi)用,然后由年的就醫(yī)費(fèi)用占總收人,得到2019年的家庭總收人再根據(jù)儲畜費(fèi)用占總收人求解.【詳解】因?yàn)?018年的家庭總收人為元,且就醫(yī)費(fèi)用占所以就醫(yī)費(fèi)用因?yàn)槟甑木歪t(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,所以年的就醫(yī)費(fèi)用元,而年的就醫(yī)費(fèi)用占總收人所以2019年的家庭總收人為而儲畜費(fèi)用占總收人所以儲畜費(fèi)用:故選:A【點(diǎn)睛】本題主要考查統(tǒng)計(jì)中的折線圖和條形圖的應(yīng)用,還考查了建模解模的能力,屬于基礎(chǔ)題.2.A【解析】

首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點(diǎn)為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【點(diǎn)睛】本題主要考查了空間幾何題中線面夾角的計(jì)算,屬于基礎(chǔ)題.3.D【解析】

設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于基礎(chǔ)題.4.B【解析】

函數(shù)的圖象恒在軸的上方,在上恒成立.即,即函數(shù)的圖象在直線上方,先求出兩者相切時的值,然后根據(jù)變化時,函數(shù)的變化趨勢,從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠(yuǎn)在的上方,設(shè)與的切點(diǎn),則,解得,易知越小,圖象越靠上,所以.故選:B.【點(diǎn)睛】本題考查函數(shù)圖象與不等式恒成立的關(guān)系,考查轉(zhuǎn)化與化歸思想,首先函數(shù)圖象轉(zhuǎn)化為不等式恒成立,然后不等式恒成立再轉(zhuǎn)化為函數(shù)圖象,最后由極限位置直線與函數(shù)圖象相切得出參數(shù)的值,然后得出參數(shù)范圍.5.A【解析】

先求出,由正弦定理求得,然后由面積公式計(jì)算.【詳解】由題意,.由得,.故選:A.【點(diǎn)睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關(guān)系,兩角和的正弦公式與誘導(dǎo)公式,解題時要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.6.D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項(xiàng).7.B【解析】

為所求的二面角的平面角,由得出,求出在內(nèi)的軌跡,根據(jù)軌跡的特點(diǎn)求出的最大值對應(yīng)的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內(nèi),以為軸,以的中垂線為軸建立平面直角坐標(biāo)系則,設(shè),整理可得:在內(nèi)的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當(dāng)與圓相切時,最大,取得最小值此時故選【點(diǎn)睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結(jié)果.8.B【解析】

設(shè)正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內(nèi),使得每條棱恰好為正方體的面對角線,根據(jù)正方體和正四面體的外接球?yàn)橥粋€球計(jì)算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內(nèi),設(shè)正方體的棱長為a,如圖所示,設(shè)正四面體ABCD的外接球的半徑為R,則,得.因?yàn)檎拿骟wABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.【點(diǎn)睛】本題考查球的內(nèi)接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計(jì)算能力,屬于中檔題.9.C【解析】

求出導(dǎo)函數(shù),由有不等的兩實(shí)根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.10.A【解析】分析:作出函數(shù)的圖象,利用消元法轉(zhuǎn)化為關(guān)于的函數(shù),構(gòu)造函數(shù)求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,即可得到結(jié)論.詳解:作出函數(shù)的圖象,如圖所示,若,且,則當(dāng)時,得,即,則滿足,則,即,則,設(shè),則,當(dāng),解得,當(dāng),解得,當(dāng)時,函數(shù)取得最小值,當(dāng)時,;當(dāng)時,,所以,即的取值范圍是,故選A.點(diǎn)睛:本題主要考查了分段函數(shù)的應(yīng)用,構(gòu)造新函數(shù),求解新函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性和最值是解答本題的關(guān)鍵,著重考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想方法,以及分析問題和解答問題的能力,試題有一定的難度,屬于中檔試題.11.C【解析】

如圖所示,當(dāng)點(diǎn)C位于垂直于面的直徑端點(diǎn)時,三棱錐的體積最大,設(shè)球的半徑為,此時,故,則球的表面積為,故選C.考點(diǎn):外接球表面積和椎體的體積.12.D【解析】

,不能得到,成立也不能推出,即可得到答案.【詳解】因?yàn)閤,,當(dāng)時,不妨取,,故時,不成立,當(dāng)時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點(diǎn)睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設(shè),利用正弦定理,根據(jù),得到①,再利用余弦定理得②,①②平方相加得:,轉(zhuǎn)化為有解問題求解.【詳解】設(shè),所以,即①由余弦定理得,即②,①②平方相加得:,即,令,設(shè),在上有解,所以,解得,即,故答案為:【點(diǎn)睛】本題主要考查正弦定理和余弦定理在平面幾何中的應(yīng)用,還考查了運(yùn)算求解的能力,屬于難題.14.【解析】

根據(jù)題意,利用扇形面積公式求出圓心角,再根據(jù)等腰三角形性質(zhì)求出,利用向量的數(shù)量積公式求出.【詳解】設(shè)角,則,,所以在等腰三角形中,,則.故答案為:.【點(diǎn)睛】本題考查扇形的面積公式和向量的數(shù)量積公式,屬于基礎(chǔ)題.15.【解析】

畫出可行域,平移基準(zhǔn)直線到可行域邊界位置,由此求得最大值以及最小值,進(jìn)而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當(dāng)直線過點(diǎn)時,取得最大值7;過點(diǎn)時,取得最小值2,所以.【點(diǎn)睛】本小題主要考查利用線性規(guī)劃求線性目標(biāo)函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標(biāo)函數(shù)的基準(zhǔn)函數(shù);接著畫出基準(zhǔn)函數(shù)對應(yīng)的基準(zhǔn)直線;然后通過平移基準(zhǔn)直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.16.16.【解析】由題意可知拋物線的焦點(diǎn),準(zhǔn)線為設(shè)直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設(shè)點(diǎn)由跟與系數(shù)的關(guān)系得,同理∵根據(jù)拋物線的性質(zhì),拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離∴,同理∴,當(dāng)且僅當(dāng)時取等號.故答案為16點(diǎn)睛:(1)與拋物線有關(guān)的最值問題,一般情況下都與拋物線的定義有關(guān).利用定義可將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,可以使運(yùn)算化繁為簡.“看到準(zhǔn)線想焦點(diǎn),看到焦點(diǎn)想準(zhǔn)線”,這是解決拋物線焦點(diǎn)弦有關(guān)問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞增;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減.【解析】

(1)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(2)易得函數(shù)定義域是,且.故分,和與四種情況,分別分析得極值點(diǎn)的關(guān)系進(jìn)而求得原函數(shù)的單調(diào)性即可.【詳解】(1)當(dāng)時,,則切線的斜率為.又,則曲線在點(diǎn)的切線方程是,即.(2)的定義域是..①當(dāng)時,,所以當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減;②當(dāng)時,,所以當(dāng)和時,;當(dāng)時,,所以在和上單調(diào)遞增,在上單調(diào)遞減;③當(dāng)時,,所以在上恒成立.所以在上單調(diào)遞增;④當(dāng)時,,所以和時,;時,.所以在和上單調(diào)遞增,在上單調(diào)遞減.綜上所述,當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞增;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義以及含參數(shù)的函數(shù)單調(diào)性討論,需要根據(jù)題意求函數(shù)的極值點(diǎn),再根據(jù)極值點(diǎn)的大小關(guān)系分類討論即可.屬于??碱}.18.(1)(?。áⅲ┓植急硪娊馕觯唬?)理由見解析【解析】

(1)(i)若家長對小孩子的飲食習(xí)慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結(jié)果,利用列舉法求出其中滿足“家長的排序與對應(yīng)位置的數(shù)字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完全不同的概率.

(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長的排序一共有24種情況,由此能求出X的分布列.

(2)假設(shè)家長對小孩的飲食習(xí)慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結(jié)果都滿足“X<4”的概率為,這個結(jié)果發(fā)生的可能性很小,從而這位家長對小孩飲食習(xí)慣比較了解.【詳解】(1)(i)若家長對小孩子的飲食習(xí)慣完全不了解,則家長對小孩的排序是隨意猜測的,先考慮小孩的排序?yàn)閤A,xB,xC,xD為1234的情況,家長的排序有=24種等可能結(jié)果,其中滿足“家長的排序與對應(yīng)位置的數(shù)字完全不同”的情況有9種,分別為:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家長的排序與對應(yīng)位置的數(shù)字完全不同的概率P=.基小孩對四種食物的排序是其他情況,只需將角標(biāo)A,B,C,D按照小孩的順序調(diào)整即可,假設(shè)小孩的排序xA,xB,xC,xD為1423的情況,四種食物按1234的排列為ACDB,再研究yAyByCyD的情況即可,其實(shí)這樣處理后與第一種情況的計(jì)算結(jié)果是一致的,∴他們在一輪游戲中,對四種食物排出的序號完全不同的概率為.(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長的排序一共有24種情況,列出所有情況,分別計(jì)算每種情況下的x的值,X的分布列如下表:X02468101214161820P(2)這位家長對小孩的飲食習(xí)慣比較了解.理由如下:假設(shè)家長對小孩的飲食習(xí)慣完全不了解,由(1)可知,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結(jié)果都滿足“X<4”的概率為()3=,這個結(jié)果發(fā)生的可能性很小,∴這位家長對小孩飲食習(xí)慣比較了解.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合、列舉法等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.19.(1);(2).【解析】

(1)求出,再求恒成立,以及恒成立時,的取值范圍;(2)由已知,在區(qū)間內(nèi)恰有一個零點(diǎn),轉(zhuǎn)化為在區(qū)間內(nèi)恰有兩個零點(diǎn),由(1)的結(jié)論對分類討論,根據(jù)單調(diào)性,結(jié)合零點(diǎn)存在性定理,即可求出結(jié)論.【詳解】(1)由題意得,則,當(dāng)函數(shù)在區(qū)間上單調(diào)遞增時,在區(qū)間上恒成立.∴(其中),解得.當(dāng)函數(shù)在區(qū)間上單調(diào)遞減時,在區(qū)間上恒成立,∴(其中),解得.綜上所述,實(shí)數(shù)的取值范圍是.(2).由,知在區(qū)間內(nèi)恰有一個零點(diǎn),設(shè)該零點(diǎn)為,則在區(qū)間內(nèi)不單調(diào).∴在區(qū)間內(nèi)存在零點(diǎn),同理在區(qū)間內(nèi)存在零點(diǎn).∴在區(qū)間內(nèi)恰有兩個零點(diǎn).由(1)易知,當(dāng)時,在區(qū)間上單調(diào)遞增,故在區(qū)間內(nèi)至多有一個零點(diǎn),不合題意.當(dāng)時,在區(qū)間上單調(diào)遞減,故在區(qū)間內(nèi)至多有一個零點(diǎn),不合題意,∴.令,得,∴函數(shù)在區(qū)間上單凋遞減,在區(qū)間上單調(diào)遞增.記的兩個零點(diǎn)為,∴,必有.由,得.∴又∵,∴.綜上所述,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、零點(diǎn)問題,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.20.(1)(2)詳見解析(3)29【解析】

(1)將,代入,可求出,,可代入求,,可求結(jié)果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數(shù)列的通項(xiàng)公式為:;等差數(shù)列的通項(xiàng)公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數(shù)列的通項(xiàng)公式為:;等差數(shù)列的通項(xiàng)公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數(shù),考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數(shù).反證法:假設(shè)集合中任何一個元素,都不是7的倍數(shù),則集合中每一元素關(guān)于7的余數(shù)可以為1,2,3,4,5,6,又因?yàn)榧现泄灿?個元素,所以集合中至少存在兩個元素關(guān)于7的余數(shù)相同,不妨設(shè)為,,其中,,.則這兩個元素的差為7的倍數(shù),即,所以,與矛盾,所以假設(shè)不成立,即原命題成立.即集合中至少有一元素是7的倍數(shù),不妨設(shè)該元素為,,,則存在,使,,,即,,,由已證可知,若,則存在,,使,而,所以為負(fù)整數(shù),設(shè),則,且,,,,所以,當(dāng),時,對于整數(shù),若,則成立.(3)下面用反證法證明:若對于整數(shù),,則,假設(shè)命題不成立,即,且.則對于整數(shù),存在,,,,,使成立,整理,得,又因?yàn)椋?,所以且?的倍數(shù),因?yàn)?,,所以,所以矛盾,即假設(shè)不成立.所以對于整數(shù),若,則,又由第二問,對于整數(shù),則,所以的最大值,就是集合中元素的最大值,又因?yàn)?,,,,所以.【點(diǎn)睛】本題考查數(shù)列的綜合應(yīng)用,以及反證法,求最值,屬于難題.21.(1)1(2)【解析】

(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論