版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023屆廣東省深圳市龍崗區(qū)下學期高三數(shù)學試題期末考試試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.32.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.3.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為3,且,則拋物線的方程是()A. B. C. D.4.設(shè)正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.25.已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、、元).甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為()A. B. C. D.6.若直線的傾斜角為,則的值為()A. B. C. D.7.已知點、.若點在函數(shù)的圖象上,則使得的面積為的點的個數(shù)為()A. B. C. D.8.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.9.設(shè),,,則()A. B. C. D.10.設(shè)復數(shù)滿足(為虛數(shù)單位),則復數(shù)的共軛復數(shù)在復平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知函數(shù),若方程恰有兩個不同實根,則正數(shù)m的取值范圍為()A. B.C. D.12.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態(tài)分布(),若,則D.設(shè)是實數(shù),“”是“”的充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個組的概率為__________.14.過拋物線C:()的焦點F且傾斜角為銳角的直線l與C交于A,B兩點,過線段的中點N且垂直于l的直線與C的準線交于點M,若,則l的斜率為______.15.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.16.(5分)已知橢圓方程為,過其下焦點作斜率存在的直線與橢圓交于兩點,為坐標原點,則面積的取值范圍是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.18.(12分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.(1)設(shè)方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;(2)設(shè),試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))19.(12分)已知函數(shù),函數(shù),其中,是的一個極值點,且.(1)討論的單調(diào)性(2)求實數(shù)和a的值(3)證明20.(12分)在平面直角坐標系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點M對應(yīng)的參數(shù),射線與曲線交于點.(1)求曲線,的直角坐標方程;(2)若點A,B為曲線上的兩個點且,求的值.21.(12分)某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學都選高校的概率;(2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學中選高校的人數(shù),求隨機變量的分布列及數(shù)學期望.22.(10分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測數(shù)據(jù),結(jié)果統(tǒng)計如下:空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染嚴重污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天的經(jīng)濟損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計該企業(yè)一個月(按30天計算)的經(jīng)濟損失的數(shù)學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎(chǔ).2.C【解析】
根據(jù)總有恒成立可構(gòu)造函數(shù),求導后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡可得,求得,再換元求導分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無最大值.若,則當時,,在上單調(diào)遞減,當時,,在上單調(diào)遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當時,,在遞減;當時,,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點睛】本題主要考查了根據(jù)導數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進而求導構(gòu)造函數(shù)求解的最大值.屬于難題.3.B【解析】
利用拋物線的定義可得,,把線段AB中點的橫坐標為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點為F,設(shè)點,由拋物線的定義可知,線段AB中點的橫坐標為3,又,,可得,所以拋物線方程為.故選:B.【點睛】本題考查拋物線的定義、標準方程,以及簡單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.4.D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.5.B【解析】
甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得.【詳解】由題意甲、乙租車費用為3元的概率分別是,∴甲、乙兩人所扣租車費用相同的概率為.故選:B.【點睛】本題考查獨立性事件的概率.掌握獨立事件的概率乘法公式是解題基礎(chǔ).6.B【解析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.7.C【解析】
設(shè)出點的坐標,以為底結(jié)合的面積計算出點到直線的距離,利用點到直線的距離公式可得出關(guān)于的方程,求出方程的解,即可得出結(jié)論.【詳解】設(shè)點的坐標為,直線的方程為,即,設(shè)點到直線的距離為,則,解得,另一方面,由點到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點共有三個.故選:C.【點睛】本題考查三角形面積的計算,涉及點到直線的距離公式的應(yīng)用,考查運算求解能力,屬于中等題.8.C【解析】
求得點坐標,由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點坐標,進而求得【詳解】拋物線焦點為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎(chǔ)題.9.A【解析】
先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.10.D【解析】
先把變形為,然后利用復數(shù)代數(shù)形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內(nèi)對應(yīng)的點為,在第四象限故選:D【點睛】此題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.11.D【解析】
當時,函數(shù)周期為,畫出函數(shù)圖像,如圖所示,方程兩個不同實根,即函數(shù)和有圖像兩個交點,計算,,根據(jù)圖像得到答案.【詳解】當時,,故函數(shù)周期為,畫出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個交點.,,故,,,,.根據(jù)圖像知:.故選:.【點睛】本題考查了函數(shù)的零點問題,確定函數(shù)周期畫出函數(shù)圖像是解題的關(guān)鍵.12.D【解析】
由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態(tài)分布的性質(zhì)可判斷選項C;或,利用集合間的包含關(guān)系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關(guān)的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先求出總的基本事件數(shù),再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數(shù),然后根據(jù)古典概型求解.【詳解】6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料的基本事件總數(shù)共有個,甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個數(shù)有:個,所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【點睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是中檔題.14.【解析】
分別過A,B,N作拋物線的準線的垂線,垂足分別為,,,根據(jù)拋物線定義和求得,從而求得直線l的傾斜角.【詳解】分別過A,B,N作拋物線的準線的垂線,垂足分別為,,,由拋物線的定義知,,,因為,所以,所以,即直線的傾斜角為,又直線與直線l垂直且直線l的傾斜角為銳角,所以直線l的傾斜角為,.故答案為:【點睛】此題考查拋物線的定義,根據(jù)已知條件做出輔助線利用拋物線定義和幾何關(guān)系即可求解,屬于較易題目.15.【解析】
算法的功能是求的值,根據(jù)輸出的值,分別求出當時和當時的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當時,,可得:,或(舍去);當時,,可得:(舍去).綜上的值為:.故答案為:.【點睛】本題考查了選擇結(jié)構(gòu)的程序語句,根據(jù)語句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.16.【解析】
由題意,,則,得.由題意可設(shè)的方程為,,聯(lián)立方程組,消去得,恒成立,,,則,點到直線的距離為,則,又,則,當且僅當即時取等號.故面積的取值范圍是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.A【解析】
由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進而化簡,即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,以及三角形的面積公式和正切的倍角公式的綜合應(yīng)用,著重考查了推理與運算能力,屬于中檔試題.18.(1)分布列見解析;(2)406.【解析】
(1)計算個人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為,得到分布列.(2)計算,代入數(shù)據(jù)計算比較大小得到答案.【詳解】(1)設(shè)每個人的血呈陰性反應(yīng)的概率為,則.所以個人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為.依題意可知,,所以的分布列為:(2)方案②中.結(jié)合(1)知每個人的平均化驗次數(shù)為:時,,此時1000人需要化驗的總次數(shù)為690次,時,,此時1000人需要化驗的總次數(shù)為604次,時,,此時1000人需要化驗的次數(shù)總為594次,即時化驗次數(shù)最多,時次數(shù)居中,時化驗次數(shù)最少,而采用方案①則需化驗1000次,故在這三種分組情況下,相比方案①,當時化驗次數(shù)最多可以平均減少次.【點睛】本題考查了分布列,數(shù)學期望,意在考查學生的計算能力和應(yīng)用能力.19.(1)在區(qū)間單調(diào)遞增;(2);(3)證明見解析.【解析】
(1)求出,在定義域內(nèi),再次求導,可得在區(qū)間上恒成立,從而可得結(jié)論;(2)由,可得,由可得,聯(lián)立解方程組可得結(jié)果;(3)由(1)知在區(qū)間單調(diào)遞增,可證明,取,可得,而,利用裂項相消法,結(jié)合放縮法可得結(jié)果.【詳解】(1)由已知可得函數(shù)的定義域為,且,令,則有,由,可得,可知當x變化時,的變化情況如下表:1-0+極小值,即,可得在區(qū)間單調(diào)遞增;(2)由已知可得函數(shù)的定義域為,且,由已知得,即,①由可得,,②聯(lián)立①②,消去a,可得,③令,則,由(1)知,,故,在區(qū)間單調(diào)遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區(qū)間單調(diào)遞增,故當時,,,可得在區(qū)間單調(diào)遞增,因此,當時,,即,亦即,這時,故可得,取,可得,而,故.【點睛】本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性以及不等式的證明,屬于難題.不等式證明問題是近年高考命題的熱點,利用導數(shù)證明不等主要方法有兩個,一是比較簡單的不等式證明,不等式兩邊作差構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最值即可;二是較為綜合的不等式證明,要觀察不等式特點,結(jié)合已解答的問題把要證的不等式變形,并運用已證結(jié)論先行放縮,然后再化簡或者進一步利用導數(shù)證明.20.(1)..(2)【解析】
(1)先求解a,b,消去參數(shù),即得曲線的直角坐標方程;再求解,利用極坐標和直角坐標的互化公式,即得曲線的直角坐標方程;(2)由于,可設(shè),,代入曲線直角坐標方程,可得的關(guān)系,轉(zhuǎn)化,可得解.【詳解】(1)將及對應(yīng)的參數(shù),代入得,即,所以曲線的方程為,為參數(shù),所以曲線的直角坐標方程為.設(shè)圓的半徑為R,由題意,圓的極坐標方程為(或),將點代入,得,即,所以曲線的極坐標方程為,所以曲線的直角坐標方程為.(2)由于,故可設(shè),代入曲線直角坐標方程,可得,,所以.【點睛】本題考查了極坐標和直角坐標,參數(shù)方程和一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南省昭通市威信縣2021-2022學年九年級上學期期末語文試題(含答案解析)
- 2024年蟋蟀住宅教案創(chuàng)新策略研究
- 2024年地球形狀教案:啟發(fā)式教學新策略
- 《接觸網(wǎng)施工》課件 3.2.1 硬橫梁支柱安裝
- 翻轉(zhuǎn)課堂:2024年Flash培訓課件設(shè)計與實踐
- 2024版高級ERP沙盤教案:提升企業(yè)管理水平
- 2024教案設(shè)計突破:《晚春》教學新策略
- 《雪花和雨滴的歷史演變》
- 2024年教育信息化與PFC課件的融合
- 《拌砼和易性》課件
- 人工智能算力中心平臺建設(shè)及運營項目可行性研究報告
- 中國民航發(fā)展史智慧樹知到期末考試答案章節(jié)答案2024年中國民航大學
- 口腔常見疾病的診治
- MOOC 人像攝影-中國傳媒大學 中國大學慕課答案
- MOOC 計算機組成原理-電子科技大學 中國大學慕課答案
- 2024年江蘇無錫市江陰市江南水務(wù)股份有限公司招聘筆試參考題庫含答案解析
- 中學教材、教輔征訂管理制度
- (高清版)DZT 0213-2002 冶金、化工石灰?guī)r及白云巖、水泥原料礦產(chǎn)地質(zhì)勘查規(guī)范
- 消防安全評估消防安全評估方案
- 工程造價專業(yè)《工程經(jīng)濟》課程標準
- ZARA服裝市場營銷策略研究分析 市場營銷專業(yè)
評論
0/150
提交評論