




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023屆河南省駐馬店第二學期高三第三次模擬考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,集合,則()A. B. C. D.2.下列函數中,在區(qū)間上為減函數的是()A. B. C. D.3.本次模擬考試結束后,班級要排一張語文、數學、英語、物理、化學、生物六科試卷講評順序表,若化學排在生物前面,數學與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種4.若,則的值為()A. B. C. D.5.已知函數的部分圖象如圖所示,則()A. B. C. D.6.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.7.在復平面內,復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.要得到函數的圖象,只需將函數圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度9.已知等式成立,則()A.0 B.5 C.7 D.1310.“”是“函數(為常數)為冪函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件11.在條件下,目標函數的最大值為40,則的最小值是()A. B. C. D.212.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在菱形ABCD中,AB=3,,E,F分別為BC,CD上的點,,若線段EF上存在一點M,使得,則____________,____________.(本題第1空2分,第2空3分)14.若曲線(其中常數)在點處的切線的斜率為1,則________.15.設為數列的前項和,若,則____16.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序將每個螺栓固定緊,但不能連續(xù)固定相鄰的2個螺栓.則不同的固定螺栓方式的種數是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數.(Ⅰ)若在區(qū)間上單調遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數據:)18.(12分)在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.(1)求曲線的直角坐標方程和曲線的參數方程;(2)設曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.19.(12分)已知動圓Q經過定點,且與定直線相切(其中a為常數,且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.20.(12分)已知函數,其中.(1)函數在處的切線與直線垂直,求實數的值;(2)若函數在定義域上有兩個極值點,且.①求實數的取值范圍;②求證:.21.(12分)設,,,.(1)若的最小值為4,求的值;(2)若,證明:或.22.(10分)某市調硏機構對該市工薪階層對“樓市限購令”態(tài)度進行調查,抽調了50名市民,他們月收入頻數分布表和對“樓市限購令”贊成人數如下表:月收入(單位:百元)頻數51055頻率0.10.20.10.1贊成人數4812521(1)若所抽調的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調查者中隨機選取2人進行追蹤調查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數學期望.(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據表格數據,判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結果.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.【點睛】考查描述法、區(qū)間的定義,對數函數的單調性,以及并集的運算.2.C【解析】
利用基本初等函數的單調性判斷各選項中函數在區(qū)間上的單調性,進而可得出結果.【詳解】對于A選項,函數在區(qū)間上為增函數;對于B選項,函數在區(qū)間上為增函數;對于C選項,函數在區(qū)間上為減函數;對于D選項,函數在區(qū)間上為增函數.故選:C.【點睛】本題考查函數在區(qū)間上單調性的判斷,熟悉一些常見的基本初等函數的單調性是判斷的關鍵,屬于基礎題.3.B【解析】
利用分步計數原理結合排列求解即可【詳解】第一步排語文,英語,化學,生物4種,且化學排在生物前面,有種排法;第二步將數學和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應用,不相鄰采用插空法求解,準確分步是關鍵,是基礎題4.C【解析】
根據,再根據二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應用,考查了二項式展開式通項公式的應用,考查了數學運算能力5.A【解析】
先利用最高點縱坐標求出A,再根據求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數的據圖求式問題以及三角函數的公式變換.據圖求式問題要注意結合五點法作圖求解.屬于中檔題.6.C【解析】
先求得的漸近線方程,根據沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎題.7.B【解析】
化簡復數為的形式,然后判斷復數的對應點所在象限,即可求得答案.【詳解】對應的點的坐標為在第二象限故選:B.【點睛】本題主要考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.8.B【解析】
分析:根據三角函數的圖象關系進行判斷即可.詳解:將函數圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),
得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數的圖象變換,結合和的關系是解決本題的關鍵.9.D【解析】
根據等式和特征和所求代數式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應用,考查了特殊值代入法,考查了數學運算能力.10.A【解析】
根據冪函數定義,求得的值,結合充分條件與必要條件的概念即可判斷.【詳解】∵當函數為冪函數時,,解得或,∴“”是“函數為冪函數”的充分不必要條件.故選:A.【點睛】本題考查了充分必要條件的概念和判斷,冪函數定義的應用,屬于基礎題.11.B【解析】
畫出可行域和目標函數,根據平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標函數,根據圖像知:當時,有最大值為,即,故..當,即時等號成立.故選:.【點睛】本題考查了線性規(guī)劃中根據最值求參數,均值不等式,意在考查學生的綜合應用能力.12.C【解析】
根據并集的求法直接求出結果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據題意,設,則,所以,解得,所以,從而有.14.【解析】
利用導數的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點睛】本題考查導數的幾何意義,考查學生的基本運算能力,是一道基礎題.15.【解析】
當時,由,解得,當時,,兩式相減可得,即,可得數列是等比數列再求通項公式.【詳解】當時,,即,當時,,兩式相減可得,即,即,故數列是以為首項,為公比的等比數列,所以.故答案為:【點睛】本題考查數列的前項和與通項公式的關系,還考查運算求解能力以及化歸與轉化思想,屬于基礎題.16.60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數原理,可以求得共有10種方法,利用分步乘法計數原理,求得總共有種方法.詳解:根據題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘的時候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數原理和分步乘法計數原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求導,得,已知導函數單調遞增,又在區(qū)間上單調遞增,故,令,求得,討論得,而,故,進而得解;(Ⅱ)可通過必要性探路,當時,由知,又由于,則,當,,結合零點存在定理可判斷必存在使得,得,,化簡得,再由二次函數性質即可求證;【詳解】(Ⅰ)的定義域為.易知單調遞增,由題意有.令,則.令得.所以當時,單調遞增;當時,單調遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調遞增,而,,因此必存在使得,即.且當時,單調遞減;當時,,單調遞增;則.綜上,的最大值為3.【點睛】本題考查導數的計算,利用導數研究函數的增減性和最值,屬于中檔題18.(1)曲線的直角坐標方程為,曲線的參數方程為為參數(2)【解析】
(1)將代入,可得,所以曲線的直角坐標方程為.由可得,將,代入上式,可得,整理可得,所以曲線的參數方程為為參數.(2)由題可設,,,所以,,,所以,因為,所以,所以當,即時,l取得最大值為,所以的周長的最大值為.19.(1),拋物線;(2)存在,.【解析】
(1)設,易得,化簡即得;(2)利用導數幾何意義可得,要使,只需.聯(lián)立直線m與拋物線方程,利用根與系數的關系即可解決.【詳解】(1)設,由題意,得,化簡得,所以動圓圓心Q的軌跡方程為,它是以F為焦點,以直線l為準線的拋物線.(2)不妨設.因為,所以,從而直線PA的斜率為,解得,即,又,所以軸.要使,只需.設直線m的方程為,代入并整理,得.首先,,解得或.其次,設,,則,..故存在直線m,使得,此時直線m的斜率的取值范圍為.【點睛】本題考查直線與拋物線位置關系的應用,涉及拋物線中的存在性問題,考查學生的計算能力,是一道中檔題.20.(1);(2)①;②詳見解析.【解析】
(1)由函數在處的切線與直線垂直,即可得,對其求導并表示,代入上述方程即可解得答案;(2)①已知要求等價于在上有兩個根,且,即在上有兩個不相等的根,由二次函數的圖象與性質構建不等式組,解得答案,最后分析此時單調性推及極值說明即可;②由①可知,是方程的兩個不等的實根,由韋達定理可表達根與系數的關系,進而用含的式子表示,令,對求導分析單調性,即可知道存在常數使在上單調遞減,在上單調遞增,進而求最值證明不等式成立.【詳解】解:(1)依題意,,,故,所以,據題意可知,,解得.所以實數的值為.(2)①因為函數在定義域上有兩個極值點,且,所以在上有兩個根,且,即在上有兩個不相等的根.所以解得.當時,若或,,,函數在和上單調遞增;若,,,函數在上單調遞減,故函數在上有兩個極值點,且.所以,實數的取值范圍是.②由①可知,是方程的兩個不等的實根,所以其中.故,令,其中.故,令,,在上單調遞增.由于,,所以存在常數,使得,即,,且當時,,在上單調遞減;當時,,在上單調遞增,所以當時,,又,,所以,即,故得證.【點睛】本題考查導數的幾何意義、兩直線的位置關系、由極值點個數求參數范圍問題,還考查了利用導數證明不等式成立,屬于難題.21.(1)2;(2)見解析【解析】
(1)將化簡為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據,即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.【點睛】本題考查基本不等式的應用,利用基本不等式和放縮法求最值,考查化簡計算能力.22.(1),頻率分布直方圖見解析;(2)分布列見解析,;(3)來自的可能性最大.【解析】
(1)由頻率和為可知,根據求得,從而計算得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級上冊數學教案 除數是整數的小數除法(二) 西師大版
- 二年級下冊數學教案 第1課時 東西南北 北師大版
- 三年級數學下冊教學設計-1.6集郵北師大版
- 六年級下冊數學教案-7.2 圖形與位置 ∣蘇教版
- 三年級下冊數學教案-5.5 求簡單的經過時間丨蘇教版
- 2025年房地產經紀公司補充協(xié)議反饋 副本
- 2025年學習雷鋒精神62周年主題活動實施方案 (3份)
- 湖南省2024年普通高等學?!緦凇空猩荚嚒編煼额悺繉I(yè)【綜合知識】試題及答案
- 3-乘法-北師大版三年級下冊數學單元測試卷(含答案)
- 《晚春》歷年中考古詩欣賞試題匯編(截至2023年)
- X證書失智老年人照護講解
- 工廠安全事故預防知識
- 2024-2025學年人教版數學八年級下冊期中檢測卷(含答案)
- 2024年江西應用工程職業(yè)學院高職單招職業(yè)適應性測試歷年參考題庫含答案解析
- 中醫(yī)護理技術操作質量控制
- 6月26國際禁毒日防范青少年藥物濫用禁毒宣傳課件
- 老舊小區(qū)基礎設施環(huán)境改造工程施工質量因素的分析及控制方法
- 筑牢安全防線守護平安校園
- 高考語文一輪復習:文學類文本閱讀之賞析語言、手法(原卷版+解析)
- 2023-2024學年江蘇省淮安市七年級(上)期末英語試卷
評論
0/150
提交評論