版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023屆河南省駐馬店經(jīng)濟(jì)開發(fā)區(qū)高級中學(xué)學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(十二)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù),若在上有且僅有5個零點(diǎn),則的取值范圍為()A. B. C. D.2.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.3.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.4.設(shè)向量,滿足,,,則的取值范圍是A. B.C. D.5.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.6.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或7.雙曲線C:(,)的離心率是3,焦點(diǎn)到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.8.對兩個變量進(jìn)行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.9.若雙曲線:繞其對稱中心旋轉(zhuǎn)后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或10.已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn),在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.11.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.12.下圖是我國第24~30屆奧運(yùn)獎牌數(shù)的回眸和中國代表團(tuán)獎牌總數(shù)統(tǒng)計(jì)圖,根據(jù)表和統(tǒng)計(jì)圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團(tuán)的奧運(yùn)獎牌總數(shù)一直保持上升趨勢B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實(shí)際意義C.第30屆與第29屆北京奧運(yùn)會相比,奧運(yùn)金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會中國代表團(tuán)的奧運(yùn)獎牌總數(shù)的中位數(shù)是54.5二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,()⊥(>1),若角A的最大值為,則實(shí)數(shù)的值是_______.14.設(shè)、滿足約束條件,若的最小值是,則的值為__________.15.若且時,不等式恒成立,則實(shí)數(shù)a的取值范圍為________.16.直線是曲線的一條切線為自然對數(shù)的底數(shù)),則實(shí)數(shù)__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:AQI空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染重度污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染的概率分別為.9月每天的空氣質(zhì)量對應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為X元,求X的分布列;(ii)試問該企業(yè)7月、8月、9月這三個月因空氣質(zhì)量造成的經(jīng)濟(jì)損失總額的數(shù)學(xué)期望是否會超過2.88萬元?說明你的理由.18.(12分)選修4-5:不等式選講已知函數(shù).(1)設(shè),求不等式的解集;(2)已知,且的最小值等于,求實(shí)數(shù)的值.19.(12分)如圖,已知,分別是正方形邊,的中點(diǎn),與交于點(diǎn),,都垂直于平面,且,,是線段上一動點(diǎn).(1)當(dāng)平面,求的值;(2)當(dāng)是中點(diǎn)時,求四面體的體積.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的定義域?yàn)?求實(shí)數(shù)的取值范圍.21.(12分)已知數(shù)列的前n項(xiàng)和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)令.求數(shù)列的前n項(xiàng)和.22.(10分)在平面直角坐標(biāo)系中,點(diǎn),直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)若直線與曲線相交于不同的兩點(diǎn)是線段的中點(diǎn),當(dāng)時,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
由求出范圍,結(jié)合正弦函數(shù)的圖象零點(diǎn)特征,建立不等量關(guān)系,即可求解.【詳解】當(dāng)時,,∵在上有且僅有5個零點(diǎn),∴,∴.故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.2.D【解析】
先用復(fù)數(shù)的除法運(yùn)算將復(fù)數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的基本概念和基本運(yùn)算,屬于基礎(chǔ)題.3.B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點(diǎn)睛:本題考查的知識點(diǎn)是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.4.B【解析】
由模長公式求解即可.【詳解】,當(dāng)時取等號,所以本題答案為B.【點(diǎn)睛】本題考查向量的數(shù)量積,考查模長公式,準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.5.A【解析】
由題先畫出基本圖形,結(jié)合向量加法和點(diǎn)乘運(yùn)算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點(diǎn)睛】本題考查向量的線性運(yùn)算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題6.D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點(diǎn)睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.7.A【解析】
根據(jù)焦點(diǎn)到漸近線的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點(diǎn),一條漸近線則點(diǎn)到的距離為,由所以,則又所以所以焦距為:故選:A【點(diǎn)睛】本題考查雙曲線漸近線方程,以及之間的關(guān)系,識記常用的結(jié)論:焦點(diǎn)到漸近線的距離為,屬基礎(chǔ)題.8.D【解析】
作出四個函數(shù)的圖象及給出的四個點(diǎn),觀察這四個點(diǎn)在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數(shù)圖象,同時描出題中的四個點(diǎn),它們在曲線的兩側(cè),與其他三個曲線都離得很遠(yuǎn),因此D是正確選項(xiàng),故選:D.【點(diǎn)睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點(diǎn)越多,說明擬合效果好.9.C【解析】
由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結(jié)果.【詳解】由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點(diǎn)既可在軸,又可在軸上,所以或,或.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的概念,考查了分類討論的數(shù)學(xué)思想.10.C【解析】
根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進(jìn)而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因?yàn)?在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點(diǎn)睛】本題主要考查了橢圓的定義運(yùn)用以及構(gòu)造齊次式求橢圓的離心率的問題,屬于中檔題.11.C【解析】
將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.12.B【解析】
根據(jù)表格和折線統(tǒng)計(jì)圖逐一判斷即可.【詳解】A.中國代表團(tuán)的奧運(yùn)獎牌總數(shù)不是一直保持上升趨勢,29屆最多,錯誤;B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運(yùn)會相比,奧運(yùn)金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯誤;D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會中國代表團(tuán)的奧運(yùn)獎牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【點(diǎn)睛】此題考查統(tǒng)計(jì)圖,關(guān)鍵點(diǎn)讀懂折線圖,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
把向量進(jìn)行轉(zhuǎn)化,用表示,利用基本不等式可求實(shí)數(shù)的值.【詳解】,解得=1.故答案為:1.【點(diǎn)睛】本題主要考查平面向量的數(shù)量積應(yīng)用,綜合了基本不等式,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).14.【解析】
畫出滿足條件的平面區(qū)域,求出交點(diǎn)的坐標(biāo),由得,顯然直線過時,最小,代入求出的值即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,則點(diǎn).由得,顯然當(dāng)直線過時,該直線軸上的截距最小,此時最小,,解得.故答案為:.【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.15.【解析】
將不等式兩邊同時平方進(jìn)行變形,然后得到對應(yīng)不等式組,對的取值進(jìn)行分類,將問題轉(zhuǎn)化為二次函數(shù)在區(qū)間上恒正、恒負(fù)時求參數(shù)范圍,列出對應(yīng)不等式組,即可求解出的取值范圍.【詳解】因?yàn)?,所以,所以,所以,所以或,?dāng)時,對且不成立,當(dāng)時,取,顯然不滿足,所以,所以,解得;當(dāng)時,取,顯然不滿足,所以,所以,解得,綜上可得的取值范圍是:.故答案為:.【點(diǎn)睛】本題考查根據(jù)不等式恒成立求解參數(shù)范圍,難度較難.根據(jù)不等式恒成立求解參數(shù)范圍的兩種常用方法:(1)分類討論法:分析參數(shù)的臨界值,對參數(shù)分類討論;(2)參變分離法:將參數(shù)單獨(dú)分離出來,再以函數(shù)的最值與參數(shù)的大小關(guān)系求解出參數(shù)范圍.16.【解析】
根據(jù)切線的斜率為,利用導(dǎo)數(shù)列方程,由此求得切點(diǎn)的坐標(biāo),進(jìn)而求得切線方程,通過對比系數(shù)求得的值.【詳解】,則,所以切點(diǎn)為,故切線為,即,故.故答案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解曲線的切線方程有關(guān)問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)(i)詳見解析;(ii)會超過;詳見解析【解析】
(1)利用組合進(jìn)行計(jì)算以及概率表示,可得結(jié)果.(2)(i)寫出X所有可能取值,并計(jì)算相對應(yīng)的概率,列出表格可得結(jié)果.(ii)由(i)的條件結(jié)合7月與8月空氣質(zhì)量所對應(yīng)的概率,可得7月與8月經(jīng)濟(jì)損失的期望和,最后7月、8月、9月經(jīng)濟(jì)損失總額的數(shù)學(xué)期望與2.88萬元比較,可得結(jié)果.【詳解】(1)設(shè)ξ為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則P(ξ=2),P(ξ=3),則這3天中空氣質(zhì)量至少有2天為優(yōu)的概率為;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故該企業(yè)9月的經(jīng)濟(jì)損失的數(shù)學(xué)期望為30E(X),即30E(X)=9060元,設(shè)7月、8月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為Y元,可得:,,,E(Y)=02201480320(元),所以該企業(yè)7月、8月這兩個月因空氣質(zhì)量造成經(jīng)濟(jì)損失總額的數(shù)學(xué)期望為320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月這三個月因空氣質(zhì)量造成經(jīng)濟(jì)損失總額的數(shù)學(xué)期望會超過2.88萬元.【點(diǎn)睛】本題考查概率中的分布列以及數(shù)學(xué)期望,屬基礎(chǔ)題。18.(1)(2)【解析】
(1)把f(x)去絕對值寫成分段函數(shù)的形式,分類討論,分別求得解集,綜合可得結(jié)論.(2)把f(x)去絕對值寫成分段函數(shù),畫出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時,.當(dāng)時,即為,解得.當(dāng)時,,解得.當(dāng)時,,解得.綜上,的解集為.(2).,由的圖象知,,.【點(diǎn)睛】本題主要考查含絕對值不等式的解法及含絕對值的函數(shù)的最值問題,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題19.(1).(2)【解析】
(1)利用線面垂直的性質(zhì)得出,進(jìn)而得出,利用相似三角形的性質(zhì),得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進(jìn)而得出四面體的體積,計(jì)算出,,即可得出四面體的體積.【詳解】(1)因?yàn)槠矫妫矫?,所以又因?yàn)椋即怪庇谄矫妫杂?,分別是正方形邊,的中點(diǎn),且,所以.(2)因?yàn)椋謩e是正方形邊,的中點(diǎn),所以又因?yàn)?,都垂直于平面,平面,所以因?yàn)槠矫妫云矫嫠?,四面體的體積,所以.【點(diǎn)睛】本題主要考查了線面垂直的性質(zhì)定理的應(yīng)用,以及求棱錐的體積,屬于中檔題.20.(1)(2)【解析】
(1)分類討論,去掉絕對值,化為與之等價的三個不等式組,求得每個不等式組的解集,再取并集即可.(2)要使函數(shù)的定義域?yàn)镽,只要的最小值大于0即可,根據(jù)絕對值不等式的性質(zhì)求得最小值即可得到答案.【詳解】(1)不等式或或,解得或,即x>0,所以原不等式的解集為.(2)要使函數(shù)的定義域?yàn)镽,只要的最小值大于0即可,又,當(dāng)且僅當(dāng)時取等,只需最小值,即.所以實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查絕對值不等式的解法,考查利用絕對值三角不等式求最值,屬基礎(chǔ)題.21.(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數(shù)列的通項(xiàng)公式;進(jìn)而列方程組求數(shù)列的首項(xiàng)與公差,得數(shù)列的通項(xiàng)公式;(2)由(1)可得,再利用“錯位相減法”求數(shù)列的前項(xiàng)和.試題解析:(1)由題意知當(dāng)時,,當(dāng)時,,所以.設(shè)數(shù)列的公差為,由,即,可解得,所以.(2)由(1)知,又,得,,兩式作差,得所以.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)田灌溉工程施工合同三篇
- 《保護(hù)文物》課件
- 帶人帶心的領(lǐng)導(dǎo)藝術(shù)(博商課件)
- 建筑結(jié)構(gòu)檢測鑒定技術(shù)概述(東錦內(nèi)部培訓(xùn)課件)pl
- 2024-2025學(xué)年年八年級數(shù)學(xué)人教版下冊專題整合復(fù)習(xí)卷第21章 二次根式復(fù)習(xí)卷(24年中考題匯編)-
- 《軟件技術(shù)基礎(chǔ)》課件
- 2024-2025學(xué)年江蘇省淮安市洪澤區(qū)西順河小學(xué)等四校聯(lián)考譯林版(三起)五年級上冊12月月考英語試卷(原卷版)-A4
- 2024.11.7 高一英語延慶區(qū)2024-2025學(xué)年第一學(xué)期期中試卷 解析版(2)(1)-A4
- 《供應(yīng)鏈經(jīng)營管理》課件
- 2024年浙江省中考英語試卷
- 2024年度土建升壓站工程勞務(wù)分包合同:就土建升壓站工程勞務(wù)分包事項(xiàng)達(dá)成一致3篇
- 廣東省廣州荔灣區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試卷(含答案)
- 醫(yī)藥高等數(shù)學(xué)知到智慧樹章節(jié)測試課后答案2024年秋浙江中醫(yī)藥大學(xué)
- 2022-2023學(xué)年廣東省深圳市羅湖區(qū)八年級(上)期末歷史試卷
- 校地結(jié)對共建合作協(xié)議書(2篇)
- 重慶育才中學(xué)教育集團(tuán) 2024-2025學(xué)年上學(xué)期八年級期中考試數(shù)學(xué)試題
- 企業(yè)員工心理健康管理培訓(xùn)一
- 零信任環(huán)境下的網(wǎng)絡(luò)安全風(fēng)險(xiǎn)管理優(yōu)化
- 國家開放大學(xué)電大??啤督ㄖこ添?xiàng)目管理》2024期末試題及答案
- GB/T 44823-2024綠色礦山評價通則
- 2025年全年日歷表(每月一張共12張)
評論
0/150
提交評論