新高考數(shù)學(xué)二輪培優(yōu)大題優(yōu)練10 導(dǎo)數(shù)之隱零點問題(教師版)_第1頁
新高考數(shù)學(xué)二輪培優(yōu)大題優(yōu)練10 導(dǎo)數(shù)之隱零點問題(教師版)_第2頁
新高考數(shù)學(xué)二輪培優(yōu)大題優(yōu)練10 導(dǎo)數(shù)之隱零點問題(教師版)_第3頁
新高考數(shù)學(xué)二輪培優(yōu)大題優(yōu)練10 導(dǎo)數(shù)之隱零點問題(教師版)_第4頁
新高考數(shù)學(xué)二輪培優(yōu)大題優(yōu)練10 導(dǎo)數(shù)之隱零點問題(教師版)_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

導(dǎo)數(shù)之隱零點問題導(dǎo)數(shù)之隱零點問題大題優(yōu)練10優(yōu)選例題優(yōu)選例題例1.已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0,討論SKIPIF1<0在SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,對任意SKIPIF1<0恒成立,求整數(shù)k的最大值.【答案】(1)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增;(2)SKIPIF1<0.【解析】(1)因為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,從而SKIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增.(2)因為SKIPIF1<0,對任意SKIPIF1<0恒成立,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在R上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,所以存在唯一的SKIPIF1<0,使得SKIPIF1<0,又SKIPIF1<0,由(1)知當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,所以存在唯一的SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以k的最大值為SKIPIF1<0.

模擬優(yōu)練模擬優(yōu)練1.已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)證明:不等式SKIPIF1<0恒成立.【答案】(1)答案見解析;(2)證明見解析.【解析】(1)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,令SKIPIF1<0,得到SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,綜上所述,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0,可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又由SKIPIF1<0,SKIPIF1<0,知SKIPIF1<0在SKIPIF1<0上有唯一實數(shù)根SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,結(jié)合SKIPIF1<0,知SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,即不等式SKIPIF1<0恒成立.2.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的最值;(2)若SKIPIF1<0對SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【答案】(1)最小值為SKIPIF1<0,無最大值;(2)SKIPIF1<0.【解析】(1)SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0的最小值為SKIPIF1<0,無最大值.(2)由題知,SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.因為SKIPIF1<0,SKIPIF1<0,所以存在SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,從而SKIPIF1<0,故SKIPIF1<0的取值范圍為SKIPIF1<0.3.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的極值;(2)當(dāng)SKIPIF1<0時,證明:SKIPIF1<0.【答案】(1)答案見解析;(2)證明見解析.【解析】(1)∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,函數(shù)SKIPIF1<0單調(diào)遞減,函數(shù)SKIPIF1<0無極值;當(dāng)SKIPIF1<0時,SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,故函數(shù)SKIPIF1<0的極小值為SKIPIF1<0,無極大值.(2)證明:令SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,令SKIPIF1<0的根為SKIPIF1<0,即SKIPIF1<0,兩邊求對數(shù)得SKIPIF1<0,即SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,∴SKIPIF1<0,∴SKIPIF1<0,即原不等式成立.4.設(shè)函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)當(dāng)SKIPIF1<0時,求證:SKIPIF1<0.【答案】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;(2)證明見解析.【解析】(1)SKIPIF1<0時,令SKIPIF1<0,SKIPIF1<0可化為SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0易知SKIPIF1<0為增函數(shù),且SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減.(2)令SKIPIF1<0,SKIPIF1<0可化為SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,易知SKIPIF1<0為SKIPIF1<0上增函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,而SKIPIF1<0,所以存在SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0.5.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0是函數(shù)SKIPIF1<0的極值點,求a的值;(2)當(dāng)SKIPIF1<0時,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)證明見解析.【解析】(1)SKIPIF1<0,由題意知SKIPIF1<0,又設(shè)SKIPIF1<0,顯然當(dāng)SKIPIF1<0時,SKIPIF1<0,因此函數(shù)SKIPIF1<0是增函數(shù),而SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故SKIPIF1<0是函數(shù)SKIPIF1<0的極小值點,故SKIPIF1<0符合題意.(2)當(dāng)SKIPIF1<0時,對于SKIPIF1<0時,有SKIPIF1<0,即SKIPIF1<0,故要證明SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論