![寶雞文理學(xué)院《文字設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁(yè)](http://file4.renrendoc.com/view9/M01/13/1D/wKhkGWdGVWWAdhXPAAKY9xVNkTo491.jpg)
![寶雞文理學(xué)院《文字設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁(yè)](http://file4.renrendoc.com/view9/M01/13/1D/wKhkGWdGVWWAdhXPAAKY9xVNkTo4912.jpg)
![寶雞文理學(xué)院《文字設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁(yè)](http://file4.renrendoc.com/view9/M01/13/1D/wKhkGWdGVWWAdhXPAAKY9xVNkTo4913.jpg)
![寶雞文理學(xué)院《文字設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁(yè)](http://file4.renrendoc.com/view9/M01/13/1D/wKhkGWdGVWWAdhXPAAKY9xVNkTo4914.jpg)
![寶雞文理學(xué)院《文字設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁(yè)](http://file4.renrendoc.com/view9/M01/13/1D/wKhkGWdGVWWAdhXPAAKY9xVNkTo4915.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密封線第1頁(yè),共3頁(yè)寶雞文理學(xué)院《文字設(shè)計(jì)》
2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺在農(nóng)業(yè)領(lǐng)域的應(yīng)用中,例如對(duì)農(nóng)作物的生長(zhǎng)監(jiān)測(cè)。假設(shè)要通過圖像分析評(píng)估農(nóng)作物的健康狀況,以下哪種特征可能對(duì)判斷病蟲害的存在較為敏感?()A.農(nóng)作物的顏色和紋理B.農(nóng)作物的高度和形狀C.農(nóng)田的土壤濕度D.農(nóng)田的地理位置2、計(jì)算機(jī)視覺中的表情識(shí)別旨在判斷圖像或視頻中人物的表情。假設(shè)要開發(fā)一個(gè)用于在線教育的表情識(shí)別系統(tǒng),以下關(guān)于表情特征的提取,哪一項(xiàng)是需要重點(diǎn)關(guān)注的?()A.提取面部肌肉的細(xì)微運(yùn)動(dòng)作為特征B.僅考慮眼睛和嘴巴的形狀變化C.忽略面部的整體輪廓,只關(guān)注局部特征D.不進(jìn)行任何特征提取,直接使用原始圖像進(jìn)行分類3、對(duì)于圖像的語(yǔ)義理解任務(wù),假設(shè)要理解一張圖像所表達(dá)的場(chǎng)景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂會(huì)。圖像中的信息可能比較隱晦和復(fù)雜。以下哪種方法可能有助于提高語(yǔ)義理解的準(zhǔn)確性?()A.構(gòu)建圖像的語(yǔ)義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對(duì)圖像進(jìn)行簡(jiǎn)單的分類,不進(jìn)行深入的語(yǔ)義分析D.隨機(jī)猜測(cè)圖像的語(yǔ)義4、計(jì)算機(jī)視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計(jì)的特征,如SIFT和HOG,在任何情況下都比深度學(xué)習(xí)自動(dòng)學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動(dòng)學(xué)習(xí)到圖像的多層次特征,具有很強(qiáng)的表達(dá)能力C.特征提取的結(jié)果對(duì)后續(xù)的圖像分類和目標(biāo)檢測(cè)任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要5、在計(jì)算機(jī)視覺的車牌識(shí)別任務(wù)中,需要從車輛圖像中準(zhǔn)確提取車牌號(hào)碼。假設(shè)車牌存在傾斜、變形和光照不均等問題。以下哪種車牌識(shí)別方法在應(yīng)對(duì)這些挑戰(zhàn)時(shí)表現(xiàn)更為出色?()A.基于字符分割的車牌識(shí)別B.基于模板匹配的車牌識(shí)別C.基于深度學(xué)習(xí)的車牌識(shí)別D.基于特征提取的車牌識(shí)別6、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,假設(shè)要從一個(gè)大型圖像數(shù)據(jù)庫(kù)中快速找到與給定查詢圖像相似的圖像。這些圖像可能在內(nèi)容、風(fēng)格和主題上存在差異。為了提高檢索的效率和準(zhǔn)確性,以下哪種方法通常被采用?()A.基于全局特征的圖像表示和相似性度量B.只對(duì)圖像的標(biāo)簽進(jìn)行文本匹配,忽略圖像內(nèi)容C.隨機(jī)選擇數(shù)據(jù)庫(kù)中的圖像作為檢索結(jié)果D.不進(jìn)行任何預(yù)處理,直接在原始圖像上進(jìn)行檢索7、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對(duì)于準(zhǔn)確理解場(chǎng)景是至關(guān)重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機(jī)選擇圖像中的部分區(qū)域進(jìn)行分析8、在計(jì)算機(jī)視覺的圖像融合任務(wù)中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設(shè)要將一張白天拍攝的風(fēng)景圖像和一張夜晚拍攝的同一地點(diǎn)的圖像進(jìn)行融合,以下關(guān)于圖像融合方法的描述,哪一項(xiàng)是不正確的?()A.可以基于像素級(jí)的融合策略,將兩幅圖像的像素值進(jìn)行加權(quán)或組合B.特征級(jí)融合方法先提取圖像的特征,然后進(jìn)行融合,能夠更好地保留圖像的語(yǔ)義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質(zhì)量和內(nèi)容無關(guān)D.多模態(tài)圖像融合需要考慮不同圖像的特點(diǎn)和互補(bǔ)性,以獲得更理想的融合結(jié)果9、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)任務(wù)是估計(jì)人體或物體在三維空間中的姿態(tài)。假設(shè)要估計(jì)一個(gè)人體模特的姿態(tài)。以下關(guān)于姿態(tài)估計(jì)的描述,哪一項(xiàng)是不正確的?()A.可以通過關(guān)鍵點(diǎn)檢測(cè)和關(guān)節(jié)角度計(jì)算來估計(jì)人體姿態(tài)B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)可以直接預(yù)測(cè)人體姿態(tài)的參數(shù)C.姿態(tài)估計(jì)在虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等應(yīng)用中具有重要作用D.姿態(tài)估計(jì)的結(jié)果總是非常準(zhǔn)確,不受人體遮擋和復(fù)雜動(dòng)作的影響10、在計(jì)算機(jī)視覺的車牌識(shí)別任務(wù)中,假設(shè)要從不同角度和光照條件下拍攝的車輛圖像中準(zhǔn)確識(shí)別出車牌號(hào)碼。以下哪種技術(shù)可能有助于提高識(shí)別準(zhǔn)確率?()A.字符分割和單獨(dú)識(shí)別B.利用深度學(xué)習(xí)模型進(jìn)行端到端的識(shí)別C.只關(guān)注車牌的顏色特征D.隨機(jī)猜測(cè)車牌號(hào)碼11、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,需要對(duì)整個(gè)圖像場(chǎng)景進(jìn)行分析和解釋。假設(shè)我們有一張城市街道的圖像,要理解其中的道路、建筑物、車輛和行人之間的關(guān)系。以下哪種方法能夠提供更全面和深入的場(chǎng)景理解?()A.基于對(duì)象檢測(cè)和分類的方法B.基于語(yǔ)義分割和圖模型的方法C.基于深度學(xué)習(xí)的場(chǎng)景解析網(wǎng)絡(luò)D.基于特征匹配和聚類的方法12、在計(jì)算機(jī)視覺的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對(duì)模型的訓(xùn)練和性能評(píng)估至關(guān)重要。以下關(guān)于數(shù)據(jù)集的描述,不準(zhǔn)確的是()A.大規(guī)模、多樣化和標(biāo)注準(zhǔn)確的數(shù)據(jù)集有助于訓(xùn)練出泛化能力強(qiáng)的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計(jì)算機(jī)視覺研究提供了重要的基準(zhǔn)C.數(shù)據(jù)集的構(gòu)建需要耗費(fèi)大量的時(shí)間和人力,但可以通過數(shù)據(jù)增強(qiáng)技術(shù)來減少對(duì)原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構(gòu)建完成,就不需要再進(jìn)行更新和擴(kuò)展,能夠一直滿足研究的需求13、在計(jì)算機(jī)視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲,同時(shí)盡可能保留圖像的細(xì)節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學(xué)習(xí)的圖像去噪模型,如DnCNND.不進(jìn)行任何去噪處理,保留原始噪聲圖像14、在計(jì)算機(jī)視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要從圖像中提取有意義的特征,用于后續(xù)的處理和分析,以下關(guān)于特征提取方法的描述,哪一項(xiàng)是不正確的?()A.SIFT(尺度不變特征變換)和SURF(加速穩(wěn)健特征)是常用的局部特征描述子,對(duì)圖像的旋轉(zhuǎn)、縮放和光照變化具有一定的不變性B.HOG(方向梯度直方圖)特征通過計(jì)算圖像局部區(qū)域的梯度方向分布來描述圖像,常用于行人檢測(cè)C.深度學(xué)習(xí)中的自動(dòng)特征提取,例如通過卷積神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)到的特征,比手工設(shè)計(jì)的特征更具有代表性和判別力D.特征提取的結(jié)果對(duì)后續(xù)的圖像處理任務(wù)影響不大,不同的特征提取方法可以得到相似的處理效果15、在計(jì)算機(jī)視覺的行人重識(shí)別任務(wù)中,需要在不同攝像頭拍攝的圖像中識(shí)別出同一個(gè)行人。假設(shè)我們要在一個(gè)大型商場(chǎng)的監(jiān)控系統(tǒng)中實(shí)現(xiàn)行人重識(shí)別,以下哪種特征和模型能夠提高識(shí)別的準(zhǔn)確率和跨攝像頭的泛化能力?()A.基于顏色和紋理的特征B.基于深度學(xué)習(xí)的全局特征和度量學(xué)習(xí)C.基于形狀和輪廓的特征D.基于步態(tài)和姿勢(shì)的特征16、計(jì)算機(jī)視覺中的醫(yī)學(xué)圖像分析對(duì)于疾病的診斷和治療具有重要意義。以下關(guān)于醫(yī)學(xué)圖像分析的描述,不準(zhǔn)確的是()A.可以對(duì)X光、CT、MRI等醫(yī)學(xué)圖像進(jìn)行病灶檢測(cè)、器官分割和疾病分類B.深度學(xué)習(xí)技術(shù)在醫(yī)學(xué)圖像分析中取得了顯著的成果,但也面臨數(shù)據(jù)標(biāo)注困難和模型泛化能力不足的問題C.醫(yī)學(xué)圖像分析需要遵循嚴(yán)格的醫(yī)學(xué)標(biāo)準(zhǔn)和倫理規(guī)范,確保結(jié)果的準(zhǔn)確性和可靠性D.醫(yī)學(xué)圖像分析完全依賴于計(jì)算機(jī)視覺技術(shù),醫(yī)生的經(jīng)驗(yàn)和專業(yè)知識(shí)不再重要17、計(jì)算機(jī)視覺中的光流計(jì)算用于估計(jì)圖像中像素的運(yùn)動(dòng)。假設(shè)要在一個(gè)動(dòng)態(tài)場(chǎng)景中準(zhǔn)確計(jì)算光流,以下哪種情況可能導(dǎo)致較大的誤差?()A.物體的快速運(yùn)動(dòng)B.光照的劇烈變化C.圖像的低分辨率D.以上都有可能18、計(jì)算機(jī)視覺在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助實(shí)現(xiàn)精準(zhǔn)農(nóng)業(yè)。假設(shè)一個(gè)農(nóng)場(chǎng)需要通過計(jì)算機(jī)視覺監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況。以下關(guān)于計(jì)算機(jī)視覺在農(nóng)業(yè)中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以檢測(cè)農(nóng)作物的病蟲害,及時(shí)采取防治措施B.能夠評(píng)估農(nóng)作物的生長(zhǎng)階段和成熟度,指導(dǎo)收獲時(shí)間C.計(jì)算機(jī)視覺在農(nóng)業(yè)中的應(yīng)用完全不受天氣和光照條件的影響D.可以通過無人機(jī)搭載攝像頭進(jìn)行大面積的農(nóng)田監(jiān)測(cè)19、在一個(gè)基于計(jì)算機(jī)視覺的智能零售系統(tǒng)中,需要對(duì)顧客的購(gòu)物行為進(jìn)行分析,如拿起商品、放回商品等動(dòng)作的識(shí)別。以下哪種技術(shù)在動(dòng)作識(shí)別方面可能發(fā)揮重要作用?()A.光流分析B.目標(biāo)跟蹤C(jī).動(dòng)作捕捉D.以上都是20、在計(jì)算機(jī)視覺的圖像增強(qiáng)任務(wù)中,旨在改善圖像的質(zhì)量。假設(shè)一張低光照條件下拍攝的照片需要增強(qiáng)。以下關(guān)于圖像增強(qiáng)方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過直方圖均衡化方法增強(qiáng)圖像的對(duì)比度B.基于濾波的方法能夠去除圖像中的噪聲,同時(shí)增強(qiáng)細(xì)節(jié)C.圖像增強(qiáng)可以無限制地提高圖像的質(zhì)量,不存在過度增強(qiáng)的問題D.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)也可以用于圖像增強(qiáng)二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋計(jì)算機(jī)視覺在數(shù)字出版中的作用。2、(本題5分)計(jì)算機(jī)視覺中如何進(jìn)行圖像的去噪處理?3、(本題5分)簡(jiǎn)述圖像分割的評(píng)價(jià)指標(biāo)。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)一款游戲的界面設(shè)計(jì)充滿了奇幻元素,色彩豐富,操作按鈕布局合理。請(qǐng)剖析該游戲界面設(shè)計(jì)如何營(yíng)造沉浸式體驗(yàn),如何提高玩家的操作便利性,以及在視覺風(fēng)格與游戲主題一致性方面的表現(xiàn)。2、(本題5分)解讀某體育賽事的官方攝影作品設(shè)計(jì),分析其如何通過視覺效果展示賽事精彩瞬間和運(yùn)動(dòng)員風(fēng)采。3、(本題5分)分析某運(yùn)動(dòng)品牌的運(yùn)動(dòng)場(chǎng)館設(shè)計(jì),研究其如何通過空間布局、設(shè)施配備、色彩運(yùn)用等營(yíng)造專業(yè)、舒適的運(yùn)動(dòng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個(gè)人與單位間車輛租賃服務(wù)合同范文
- 2025年住宅小區(qū)裝飾工程合同模板
- 2025年合作方共同市場(chǎng)開發(fā)合同
- 2025年寫字樓租賃終止合同范文
- 2025年度教育信息化項(xiàng)目合伙人股權(quán)分配及資源共享合同
- 2025年度城市基礎(chǔ)設(shè)施建設(shè)工程渣土運(yùn)輸及處理服務(wù)合同
- 2025年度生態(tài)環(huán)保工程質(zhì)量監(jiān)管合同
- 2025年度國(guó)際卡車租賃業(yè)務(wù)合同模板
- 2025年度智慧酒店項(xiàng)目籌建技術(shù)咨詢與全程服務(wù)合同
- 2025年度歷史文化街區(qū)保護(hù)與建筑設(shè)計(jì)合同協(xié)議書
- 2025年上半年山東氣象局應(yīng)屆高校畢業(yè)生招考易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 人教版2024-2025學(xué)年八年級(jí)上學(xué)期數(shù)學(xué)期末壓軸題練習(xí)
- 【人教版化學(xué)】必修1 知識(shí)點(diǎn)默寫小紙條(答案背誦版)
- 江蘇省無錫市2023-2024學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試題(原卷版)
- 全國(guó)第三屆職業(yè)技能大賽(無人機(jī)駕駛(植保)項(xiàng)目)選拔賽理論考試題庫(kù)(含答案)
- 成長(zhǎng)感恩責(zé)任高中主題班會(huì)-課件
- 建設(shè)項(xiàng)目全過程工程咨詢服務(wù)指引(咨詢企業(yè)版)(征求意見稿)
- 分手的協(xié)議書模板(5篇)
- 2020年度安徽省中考數(shù)學(xué)科目試卷
- 2023年山東藥品食品職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試筆試題庫(kù)及答案解析
評(píng)論
0/150
提交評(píng)論