版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
內(nèi)蒙古自治區(qū)錫林郭勒盟太仆寺旗寶昌鎮(zhèn)第一中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.2.已知,其中是虛數(shù)單位,則對(duì)應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.3.關(guān)于函數(shù),下列說(shuō)法正確的是()A.函數(shù)的定義域?yàn)锽.函數(shù)一個(gè)遞增區(qū)間為C.函數(shù)的圖像關(guān)于直線對(duì)稱D.將函數(shù)圖像向左平移個(gè)單位可得函數(shù)的圖像4.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.635.設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于()A. B. C. D.06.已知集合,,則為()A. B. C. D.7.如下的程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.158.已知集合A={x|x<1},B={x|},則A. B.C. D.9.若,,,則()A. B.C. D.10.已知命題p:直線a∥b,且b?平面α,則a∥α;命題q:直線l⊥平面α,任意直線m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)11.已知,是橢圓的左、右焦點(diǎn),過(guò)的直線交橢圓于兩點(diǎn).若依次構(gòu)成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.12.正方體,是棱的中點(diǎn),在任意兩個(gè)中點(diǎn)的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.6二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)的圖像與直線的三個(gè)相鄰交點(diǎn)的橫坐標(biāo)分別是,,,則實(shí)數(shù)的值為_(kāi)_______.14.已知實(shí)數(shù),滿足,則目標(biāo)函數(shù)的最小值為_(kāi)_________.15.已知實(shí)數(shù),滿足,則的最大值為_(kāi)_____.16.已知二項(xiàng)式ax-1x6的展開(kāi)式中的常數(shù)項(xiàng)為-160三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線l的極坐標(biāo)方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請(qǐng)分別把直線l和圓C的方程化為直角坐標(biāo)方程;(2)求直線l被圓截得的弦長(zhǎng).18.(12分)如圖,空間幾何體中,是邊長(zhǎng)為2的等邊三角形,,,,平面平面,且平面平面,為中點(diǎn).(1)證明:平面;(2)求二面角平面角的余弦值.19.(12分)在平面直角坐標(biāo)系中,已知點(diǎn),曲線:(為參數(shù))以原點(diǎn)為極點(diǎn),軸正半軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)判斷點(diǎn)與直線的位置關(guān)系并說(shuō)明理由;(Ⅱ)設(shè)直線與曲線的兩個(gè)交點(diǎn)分別為,,求的值.20.(12分)已知函數(shù)(I)當(dāng)時(shí),解不等式.(II)若不等式恒成立,求實(shí)數(shù)的取值范圍21.(12分)數(shù)列的前項(xiàng)和為,且.數(shù)列滿足,其前項(xiàng)和為.(1)求數(shù)列與的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)已知函數(shù)(1)當(dāng)時(shí),證明,在恒成立;(2)若在處取得極大值,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因?yàn)榈淖畲笾禐?,所以在點(diǎn)處取得最大值,則,即.故選:A【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過(guò)數(shù)形結(jié)合是解決本題的關(guān)鍵.2、C【解析】
利用復(fù)數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,,.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.3、B【解析】
化簡(jiǎn)到,根據(jù)定義域排除,計(jì)算單調(diào)性知正確,得到答案.【詳解】,故函數(shù)的定義域?yàn)?,故錯(cuò)誤;當(dāng)時(shí),,函數(shù)單調(diào)遞增,故正確;當(dāng),關(guān)于的對(duì)稱的直線為不在定義域內(nèi),故錯(cuò)誤.平移得到的函數(shù)定義域?yàn)?,故不可能為,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,定義域,對(duì)稱,三角函數(shù)平移,意在考查學(xué)生的綜合應(yīng)用能力.4、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時(shí),則的最大值為15,故選B.考點(diǎn):程序框圖.5、B【解析】
根據(jù)復(fù)數(shù)除法的運(yùn)算法則,即可求解.【詳解】.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)運(yùn)算,屬于基礎(chǔ)題.6、C【解析】
分別求解出集合的具體范圍,由集合的交集運(yùn)算即可求得答案.【詳解】因?yàn)榧?,,所以故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運(yùn)算,考查基本運(yùn)算能力.7、A【解析】
根據(jù)題意可知最后計(jì)算的結(jié)果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計(jì)算的結(jié)果為的最大公約數(shù),按流程圖計(jì)算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點(diǎn)睛】本題考查的是利用更相減損術(shù)求兩個(gè)數(shù)的最大公約數(shù),難度較易.8、A【解析】∵集合∴∵集合∴,故選A9、C【解析】
利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較、、三個(gè)數(shù)與和的大小關(guān)系,進(jìn)而可得出、、三個(gè)數(shù)的大小關(guān)系.【詳解】對(duì)數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.【點(diǎn)睛】本題考查指數(shù)冪與對(duì)數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性結(jié)合中間值法來(lái)比較,考查推理能力,屬于基礎(chǔ)題.10、C【解析】
首先判斷出為假命題、為真命題,然后結(jié)合含有簡(jiǎn)單邏輯聯(lián)結(jié)詞命題的真假性,判斷出正確選項(xiàng).【詳解】根據(jù)線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內(nèi),命題為假命題;根據(jù)線面垂直的定義,我們易得命題若直線平面,則若直線與平面內(nèi)的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【點(diǎn)睛】本小題主要考查線面平行與垂直有關(guān)命題真假性的判斷,考查含有簡(jiǎn)單邏輯聯(lián)結(jié)詞的命題的真假性判斷,屬于基礎(chǔ)題.11、D【解析】
如圖所示,設(shè)依次構(gòu)成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.12、B【解析】
先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點(diǎn)睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡(jiǎn)單的組合問(wèn)題,是一中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
由題可分析函數(shù)與的三個(gè)相鄰交點(diǎn)中不相鄰的兩個(gè)交點(diǎn)距離為,即,進(jìn)而求解即可【詳解】由題意得函數(shù)的最小正周期,解得故答案為:4【點(diǎn)睛】本題考查正弦型函數(shù)周期的應(yīng)用,考查求正弦型函數(shù)中的14、-1【解析】
作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過(guò)平移即可求z的最大值.【詳解】作出實(shí)數(shù)x,y滿足對(duì)應(yīng)的平面區(qū)域如圖陰影所示;由z=x+2y﹣1,得yx,平移直線yx,由圖象可知當(dāng)直線yx經(jīng)過(guò)點(diǎn)A時(shí),直線yx的縱截距最小,此時(shí)z最?。桑肁(﹣1,﹣1),此時(shí)z的最小值為z=﹣1﹣2﹣1=﹣1,故答案為﹣1.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,是基礎(chǔ)題15、【解析】
畫(huà)出不等式組表示的平面區(qū)域,將目標(biāo)函數(shù)理解為點(diǎn)與構(gòu)成直線的斜率,數(shù)形結(jié)合即可求得.【詳解】不等式組表示的平面區(qū)域如下所示:因?yàn)榭梢岳斫鉃辄c(diǎn)與構(gòu)成直線的斜率,數(shù)形結(jié)合可知,當(dāng)且僅當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),斜率取得最大值,故的最大值為.故答案為:.【點(diǎn)睛】本題考查目標(biāo)函數(shù)為斜率型的規(guī)劃問(wèn)題,屬基礎(chǔ)題.16、2【解析】
在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于-160求得實(shí)數(shù)a的值.【詳解】∵二項(xiàng)式(ax-1x)令6-2r=0,求得r=3,可得常數(shù)項(xiàng)為-C63故答案為:2.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1).x2+y2=1.(2)16【解析】
(1)直接利用極坐標(biāo)方程和參數(shù)方程公式化簡(jiǎn)得到答案.(2)圓心到直線的距離為,故弦長(zhǎng)為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長(zhǎng)為.【點(diǎn)睛】本題考查了極坐標(biāo)方程和參數(shù)方程,圓的弦長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.18、(1)證明見(jiàn)解析(2)【解析】
(1)分別取,的中點(diǎn),,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點(diǎn)為原點(diǎn),以為軸,以為軸,以為軸,建立空間直角坐標(biāo)系,分別計(jì)算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計(jì)算即可.【詳解】(1)證明:分別取,的中點(diǎn),,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以點(diǎn)為原點(diǎn),以為軸,以為軸,以為軸,建立如圖所示空間直角坐標(biāo)系由面,所以面的法向量可取,點(diǎn),點(diǎn),點(diǎn),,,設(shè)面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點(diǎn)睛】本題考查由面面平行證明線面平行以及向量法求二面角的余弦值,考查學(xué)生的運(yùn)算能力,在做此類題時(shí),一定要準(zhǔn)確寫(xiě)出點(diǎn)的坐標(biāo).19、(Ⅰ)點(diǎn)在直線上;見(jiàn)解析(Ⅱ)【解析】
(Ⅰ)直線:,即,所以直線的直角坐標(biāo)方程為,因?yàn)椋渣c(diǎn)在直線上;(Ⅱ)根據(jù)直線的參數(shù)方程中參數(shù)的幾何意義可得.【詳解】(Ⅰ)直線:,即,所以直線的直角坐標(biāo)方程為,因?yàn)椋渣c(diǎn)在直線上;(Ⅱ)直線的參數(shù)方程為(為參數(shù)),曲線的普通方程為,將直線的參數(shù)方程代入曲線的普通方程得,設(shè)兩根為,,所以,,故與異號(hào),所以,,所以.【點(diǎn)睛】本題考查在極坐標(biāo)參數(shù)方程中方程互化,還考查了直線的參數(shù)方程中參數(shù)的幾何意義,屬于中檔題.20、(Ⅰ);(Ⅱ).【解析】試題分析:(1)根據(jù)零點(diǎn)分區(qū)間法,去掉絕對(duì)值解不等式;(2)根據(jù)絕對(duì)值不等式的性質(zhì)得,因此將問(wèn)題轉(zhuǎn)化為恒成立,借此不等式即可.試題解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集為.(Ⅱ)由不等式的性質(zhì)得:,要使不等式恒成立,則當(dāng)時(shí),不等式恒成立;當(dāng)時(shí),解不等式得.綜上.所以實(shí)數(shù)的取值范圍為.21、(1),;(2).【解析】
(1)令可求得的值,令,由得出,兩式相減可推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式,再利用對(duì)數(shù)的運(yùn)算性質(zhì)可得出數(shù)列的通項(xiàng)公式;(2)運(yùn)用等差數(shù)列的求和公式,運(yùn)用數(shù)列的分組求和和裂項(xiàng)相消求和,化簡(jiǎn)可得.【詳解】(1)當(dāng)時(shí),,所以;當(dāng)時(shí),,得,即,所以,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,.;(2)由(1)知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,.,.所以.【點(diǎn)睛】本題考查數(shù)列的遞推式的運(yùn)用,注意結(jié)合等比數(shù)列的定義和通項(xiàng)公式,考查數(shù)列的求和方法:分組求和法和裂項(xiàng)相消求和,考查運(yùn)算能力,屬于中檔題.22、(1)證明見(jiàn)解析(2)【解析】
(1)根據(jù),求導(dǎo),令,用導(dǎo)數(shù)法求其最小值.設(shè)研究在處左正右負(fù),求導(dǎo),分,,三種情況
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023-2024年一級(jí)人力資源管理師考試題庫(kù)(帶答案解析)
- 2024年現(xiàn)代農(nóng)業(yè)大棚示范園購(gòu)銷合同3篇
- 2024年跨國(guó)企業(yè)營(yíng)銷與市場(chǎng)代運(yùn)營(yíng)合同
- 2024年銷售團(tuán)隊(duì)業(yè)績(jī)承諾及客戶關(guān)系維護(hù)合同3篇
- 2024年版設(shè)計(jì)服務(wù)協(xié)議提前終止協(xié)議版
- 2024版場(chǎng)地外包合同范本
- 勞動(dòng)人事管理簽訂合同范本
- 二零二五年地磚施工環(huán)保認(rèn)證與質(zhì)量保障合同3篇
- 2024年稅收優(yōu)惠政策框架3篇
- 2024年鋼材訂購(gòu)協(xié)議
- 零售服務(wù)質(zhì)量提升
- 《4 平平安安回家來(lái)》 說(shuō)課稿-2024-2025學(xué)年道德與法治一年級(jí)上冊(cè)統(tǒng)編版
- 2024中考英語(yǔ)真題分類匯編-代詞
- 第九版內(nèi)科學(xué)配套課件-8-骨髓增生異常綜合征(MDS)
- 新型電力系統(tǒng)背景下新能源發(fā)電企業(yè)技術(shù)監(jiān)督管理體系創(chuàng)新
- 新聞宣傳報(bào)道先進(jìn)單位(集體)申報(bào)材料
- 螞蟻集團(tuán)在線素質(zhì)測(cè)評(píng)題
- Unit1-3(單元測(cè)試)-2024-2025學(xué)年人教PEP版(2024)英語(yǔ)三年級(jí)上冊(cè)
- 浙江名校新2025屆高一上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析
- 人教版(2024)七年級(jí)全一冊(cè)體育與健康第2課《體育比賽中的智慧》教學(xué)設(shè)計(jì)
- 小學(xué)語(yǔ)文一年級(jí)上冊(cè)《秋天》評(píng)課稿
評(píng)論
0/150
提交評(píng)論