版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省威海市重點中學2025屆高考數(shù)學全真模擬密押卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則()A. B.1 C.-1 D.02.把函數(shù)的圖象向右平移個單位,得到函數(shù)的圖象.給出下列四個命題①的值域為②的一個對稱軸是③的一個對稱中心是④存在兩條互相垂直的切線其中正確的命題個數(shù)是()A.1 B.2 C.3 D.43.已知正四面體的內(nèi)切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.274.下圖是我國第24~30屆奧運獎牌數(shù)的回眸和中國代表團獎牌總數(shù)統(tǒng)計圖,根據(jù)表和統(tǒng)計圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團的奧運獎牌總數(shù)一直保持上升趨勢B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實際意義C.第30屆與第29屆北京奧運會相比,奧運金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數(shù)的中位數(shù)是54.55.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.6.已知函數(shù)f(x)=,若關(guān)于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A. B.C. D.7.定義兩種運算“★”與“◆”,對任意,滿足下列運算性質(zhì):①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.8.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對于下列說法:①越小,則國民分配越公平;②設(shè)勞倫茨曲線對應(yīng)的函數(shù)為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④9.設(shè),,,則的大小關(guān)系是()A. B. C. D.10.復(fù)數(shù)的共軛復(fù)數(shù)為()A. B. C. D.11.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.612.古希臘數(shù)學家畢達哥拉斯在公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.電影《厲害了,我的國》于2018年3月正式登陸全國院線,網(wǎng)友紛紛表示,看完電影熱血沸騰“我為我的國家驕傲,我為我是中國人驕傲!”《厲害了,我的國》正在召喚我們每一個人,不忘初心,用奮斗書寫無悔人生,小明想約甲、乙、丙、丁四位好朋友一同去看《厲害了,我的國》,并把標識為的四張電影票放在編號分別為1,2,3,4的四個不同的盒子里,讓四位好朋友進行猜測:甲說:第1個盒子里放的是,第3個盒子里放的是乙說:第2個盒子里放的是,第3個盒子里放的是丙說:第4個盒子里放的是,第2個盒子里放的是丁說:第4個盒子里放的是,第3個盒子里放的是小明說:“四位朋友你們都只說對了一半”可以預(yù)測,第4個盒子里放的電影票為_________14.已知函數(shù),則________;滿足的的取值范圍為________.15.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.16.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎.在比賽結(jié)果揭曉之前,四人的猜測如下表,其中“√”表示猜測某人獲獎,“×”表示猜測某人未獲獎,而“○”則表示對某人是否獲獎未發(fā)表意見.已知四個人中有且只有兩個人的猜測是正確的,那么兩名獲獎?wù)呤莀______.甲獲獎乙獲獎丙獲獎丁獲獎甲的猜測√××√乙的猜測×○○√丙的猜測×√×√丁的猜測○○√×三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),曲線在點處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設(shè),求證:.18.(12分)在中,角,,的對邊分別為,,,已知.(1)若,,成等差數(shù)列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請說明理由.19.(12分)某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學都選高校的概率;(2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學中選高校的人數(shù),求隨機變量的分布列及數(shù)學期望.20.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當時,求函數(shù)的極值;(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,求證:函數(shù)有且僅有一個零點.21.(12分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點.(2)若函數(shù)在區(qū)間上不單調(diào),證明:.22.(10分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由函數(shù),求得,進而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點睛】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、C【解析】
由圖象變換的原則可得,由可求得值域;利用代入檢驗法判斷②③;對求導(dǎo),并得到導(dǎo)函數(shù)的值域,即可判斷④.【詳解】由題,,則向右平移個單位可得,,的值域為,①錯誤;當時,,所以是函數(shù)的一條對稱軸,②正確;當時,,所以的一個對稱中心是,③正確;,則,使得,則在和處的切線互相垂直,④正確.即②③④正確,共3個.故選:C【點睛】本題考查三角函數(shù)的圖像變換,考查代入檢驗法判斷余弦型函數(shù)的對稱軸和對稱中心,考查導(dǎo)函數(shù)的幾何意義的應(yīng)用.3、D【解析】
設(shè)正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內(nèi)切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.4、B【解析】
根據(jù)表格和折線統(tǒng)計圖逐一判斷即可.【詳解】A.中國代表團的奧運獎牌總數(shù)不是一直保持上升趨勢,29屆最多,錯誤;B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運會相比,奧運金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯誤;D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【點睛】此題考查統(tǒng)計圖,關(guān)鍵點讀懂折線圖,屬于簡單題目.5、A【解析】
設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點睛】本題考查導(dǎo)數(shù)知識的運用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.6、D【解析】
由已知可將問題轉(zhuǎn)化為:y=f(x)的圖象和直線y=kx-有4個交點,作出圖象,由圖可得:點(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時,k=;結(jié)合圖象即可得解.【詳解】若關(guān)于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則y=f(x)的圖象和直線y=kx-有4個交點.作出函數(shù)y=f(x)的圖象,如圖,故點(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當直線y=kx-和y=lnx相切時,設(shè)切點橫坐標為m,則k==,∴m=.此時,k==,f(x)的圖象和直線y=kx-有3個交點,不滿足條件,故所求k的取值范圍是,故選D..【點睛】本題主要考查了函數(shù)與方程思想及轉(zhuǎn)化能力,還考查了導(dǎo)數(shù)的幾何意義及計算能力、觀察能力,屬于難題.7、B【解析】
根據(jù)新運算的定義分別得出◆2020和2020★2018的值,可得選項.【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.【點睛】本題考查定義新運算,關(guān)鍵在于理解,運用新定義進行求值,屬于中檔題.8、A【解析】
對于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.9、A【解析】
選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因為對數(shù)函數(shù)在上單調(diào)遞增,所以,因為對數(shù)函數(shù)在上單調(diào)遞減,所以,因為指數(shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、??碱}型.10、D【解析】
直接相乘,得,由共軛復(fù)數(shù)的性質(zhì)即可得結(jié)果【詳解】∵∴其共軛復(fù)數(shù)為.故選:D【點睛】熟悉復(fù)數(shù)的四則運算以及共軛復(fù)數(shù)的性質(zhì).11、B【解析】
根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結(jié)果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側(cè)面均為邊長為2的正方形,所以該正三棱柱的側(cè)面積為故選:B【點睛】本題考查正三棱柱側(cè)面積的計算以及三視圖的認識,關(guān)鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎(chǔ)題.12、B【解析】
推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),∴6和28恰好在同一組的概率.故選:B.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、A或D【解析】
分別假設(shè)每一個人一半是對的,然后分別進行驗證即可.【詳解】解:假設(shè)甲說:第1個盒子里面放的是是對的,則乙說:第3個盒子里面放的是是對的,丙說:第2個盒子里面放的是是對的,丁說:第4個盒子里面放的是是對的,由此可知第4個盒子里面放的是;假設(shè)甲說:第3個盒子里面放的是是對的,則丙說:第4個盒子里面放的是是對的,乙說:第2個盒子里面放的是是對的,丁說:第3個盒子里面放的是是對的,由此可知第4個盒子里面放的是.故第4個盒子里面放的電影票為或.故答案為:或【點睛】本題考查簡單的合情推理,考查推理論證能力、分析判斷能力、歸納總結(jié)能力,屬于中檔題.14、【解析】
首先由分段函數(shù)的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因為,所以,∵,∴當時,滿足題意,∴;當時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點睛】本題考查分段函數(shù)的性質(zhì)的應(yīng)用,分類討論思想,屬于基礎(chǔ)題.15、【解析】
設(shè),則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進而求出的關(guān)系式,即可求出橢圓的離心率.【詳解】如圖,設(shè),則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點睛】本題考查橢圓的離心率和直線與橢圓的位置關(guān)系;利用橢圓的定義,結(jié)合焦點三角形和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.16、乙、丁【解析】
本題首先可根據(jù)題意中的“四個人中有且只有兩個人的猜測是正確的”將題目分為四種情況,然后對四種情況依次進行分析,觀察四人所猜測的結(jié)果是否沖突,最后即可得出結(jié)果.【詳解】從表中可知,若甲猜測正確,則乙,丙,丁猜測錯誤,與題意不符,故甲猜測錯誤;若乙猜測正確,則依題意丙猜測無法確定正誤,丁猜測錯誤;若丙猜測正確,則丁猜測錯誤;綜上只有乙,丙猜測不矛盾,依題意乙,丙猜測是正確的,從而得出乙,丁獲獎.所以本題答案為乙、丁.【點睛】本題是一個簡單的合情推理題,能否根據(jù)“四個人中有且只有兩個人的猜測是正確的”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關(guān)鍵,考查推理能力,是簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)為減函數(shù),為增函數(shù).(3)證明見解析【解析】
(1)求出導(dǎo)函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的正負確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結(jié)論.【詳解】解:(1)對求導(dǎo),得.因此.又因為,所以曲線在點處的切線方程為,即.由題意,.顯然,適合上式.令,求導(dǎo)得,因此為增函數(shù):故是唯一解.(2)由(1)可知,,因為,所以為減函數(shù).因為,所以為增函數(shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當時,,即.令,得,即.因此,當時,.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當時,,即.因此,即.令,得,即.當時,.因為,所以,所以.所以,當時,.所以,當時,成立.綜上所述,當時,成立.【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關(guān)系:,.這是最關(guān)鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.18、見解析【解析】
(1)因為,,成等差數(shù)列,所以,由余弦定理可得,因為,所以,即,所以.(2)若B為直角,則,,由及正弦定理可得,所以,即,上式兩邊同時平方,可得,所以(*).又,所以,,所以,與(*)矛盾,所以不存在滿足為直角.19、(1)(2)(i)(ii)分布列見解析,【解析】
(1)先計算甲、乙、丙同學分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應(yīng)的概率,列出分布列,計算數(shù)學期望即得解.【詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學都選高校,共有四種情況,甲同學選高校的概率為,因此乙、丙兩同學選高校的概率為,因為每位同學彼此獨立,所以甲、乙、丙三名同學都選高校的概率為.(2)(i)甲同學必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學彼此獨立,所以甲同學選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數(shù)學期望為.【點睛】本題考查了事件獨立性的應(yīng)用和隨機變量的分布列和期望,考查了學生綜合分析,概念理解,實際應(yīng)用,數(shù)學運算的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版房地產(chǎn)抵押貸款合同3篇
- 二零二五版智慧城市物聯(lián)網(wǎng)技術(shù)應(yīng)用合同實施指南3篇
- 二零二五年度文化產(chǎn)業(yè)短期工勞務(wù)合作合同2篇
- 二零二五年金融投資風險兜底保障合同示范3篇
- 二零二五年度知識產(chǎn)權(quán)股權(quán)轉(zhuǎn)讓定金合同3篇
- 二零二五版智能交通系統(tǒng)-城區(qū)隔離護欄采購合同3篇
- 二零二五版?zhèn)€人戶外探險活動貸款合同擔保與安全協(xié)議3篇
- 二零二五版環(huán)保產(chǎn)業(yè)合理化建議書合同2篇
- 二零二五年度新型農(nóng)業(yè)耕地承包與流轉(zhuǎn)管理合同3篇
- 二零二五版GRc構(gòu)件生產(chǎn)、安裝與智能化管理合同3篇
- 二零二五年度無人駕駛車輛測試合同免責協(xié)議書
- 2023中華護理學會團體標準-注射相關(guān)感染預(yù)防與控制
- PPVT幼兒語言能力測試題附答案
- JB∕T 14089-2020 袋式除塵器 濾袋運行維護技術(shù)規(guī)范
- 陜西省寶雞市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細及行政區(qū)劃代碼
- 中華人民共和國職業(yè)分類大典電子版
- 畢業(yè)設(shè)計小型液壓機主機結(jié)構(gòu)設(shè)計與計算
- 19XR開機運行維護說明書
- 全國非煤礦山分布
- 臨床研究技術(shù)路線圖模板
- GB∕T 2099.1-2021 家用和類似用途插頭插座 第1部分:通用要求
評論
0/150
提交評論