新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題19 拋物線中的定點(diǎn)、定值、定直線問題(解析版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題19 拋物線中的定點(diǎn)、定值、定直線問題(解析版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題19 拋物線中的定點(diǎn)、定值、定直線問題(解析版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題19 拋物線中的定點(diǎn)、定值、定直線問題(解析版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題19 拋物線中的定點(diǎn)、定值、定直線問題(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題19拋物線中的定點(diǎn)、定值、定直線問題限時(shí):120分鐘滿分:150分一、單選題:本大題共8小題,每個(gè)小題5分,共40分.在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作直線l與拋物線SKIPIF1<0相交于A,B兩點(diǎn),設(shè)直線PA,PB的斜率分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.無法確定【解析】設(shè)直線方程為SKIPIF1<0,聯(lián)立拋物線方程可得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0故選:A2.已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線上(異于頂點(diǎn)),SKIPIF1<0(點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn)),過點(diǎn)SKIPIF1<0作直線SKIPIF1<0的垂線與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,則SKIPIF1<0(

)A.6 B.SKIPIF1<0 C.4 D.SKIPIF1<0【解析】法一:依題意,設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0為SKIPIF1<0的中點(diǎn)且SKIPIF1<0,則SKIPIF1<0,易得直線SKIPIF1<0的垂線SKIPIF1<0的方程為SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,由拋物線的定義易知SKIPIF1<0,故SKIPIF1<0,故選:A.法二:特殊值法.不妨設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,易得直線SKIPIF1<0的垂線SKIPIF1<0的方程為SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0.故選:A.3.過拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0的直線l交拋物線SKIPIF1<0于SKIPIF1<0兩點(diǎn),若點(diǎn)P關(guān)于x軸對(duì)稱的點(diǎn)為M,則直線QM的方程可能為

A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】由題意,拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,設(shè)直線SKIPIF1<0方程為SKIPIF1<0,聯(lián)立方程SKIPIF1<0,整理得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0三點(diǎn)向準(zhǔn)線作垂線,垂足分別為SKIPIF1<0,準(zhǔn)線與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,則SKIPIF1<0而SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0有公共點(diǎn)SKIPIF1<0,所以SKIPIF1<0三點(diǎn)共線,即直線SKIPIF1<0一定過點(diǎn)SKIPIF1<0,由四個(gè)選項(xiàng)可知,只有選項(xiàng)SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0.故選:D.4.已知直線l與拋物線SKIPIF1<0交于不同的兩點(diǎn)A,B,O為坐標(biāo)原點(diǎn),若直線SKIPIF1<0的斜率之積為SKIPIF1<0,則直線l恒過定點(diǎn)(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】設(shè)直線方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,整理得:SKIPIF1<0,需滿足SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得:SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,所以直線l為:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即直線l恒過定點(diǎn)SKIPIF1<0,故選:A.5.已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,過SKIPIF1<0且不與SKIPIF1<0軸垂直的直線與拋物線相交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0為SKIPIF1<0軸上一點(diǎn),滿足SKIPIF1<0,則SKIPIF1<0(

)A.為定值SKIPIF1<0 B.為定值SKIPIF1<0C.不是定值,最大值為SKIPIF1<0 D.不是定值,最小值為SKIPIF1<0【解析】若直線SKIPIF1<0與SKIPIF1<0軸重合,此時(shí),直線SKIPIF1<0與拋物線SKIPIF1<0只有一個(gè)交點(diǎn),不合乎題意;由題意,SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,所以,直線SKIPIF1<0的方程為SKIPIF1<0,在直線SKIPIF1<0的方程中,令SKIPIF1<0,可得SKIPIF1<0,即點(diǎn)SKIPIF1<0,所以,SKIPIF1<0,因此,SKIPIF1<0.故選:A.6.已知點(diǎn)SKIPIF1<0,設(shè)不垂直于SKIPIF1<0軸的直線SKIPIF1<0與拋物線SKIPIF1<0交于不同的兩點(diǎn)SKIPIF1<0、SKIPIF1<0,若SKIPIF1<0軸是SKIPIF1<0的角平分線,則直線SKIPIF1<0一定過點(diǎn)(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】根據(jù)題意,直線的斜率不等于零,且直線過的定點(diǎn)應(yīng)該在SKIPIF1<0軸上,設(shè)直線為SKIPIF1<0,與拋物線方程聯(lián)立,消元得SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0軸是SKIPIF1<0的角平分線,∴SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0、SKIPIF1<0的斜率互為相反數(shù),即SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,故直線過定點(diǎn)SKIPIF1<0.故選:A.7.已知SKIPIF1<0、SKIPIF1<0、SKIPIF1<0是拋物線SKIPIF1<0上三個(gè)不同的點(diǎn),且拋物線的焦點(diǎn)SKIPIF1<0是SKIPIF1<0的重心,若直線SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的斜率存在且分別為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0(

)A.3 B.SKIPIF1<0 C.1 D.0【解析】設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,兩式相減,得SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,同理可得SKIPIF1<0,SKIPIF1<0,因?yàn)榻裹c(diǎn)SKIPIF1<0是SKIPIF1<0的重心,所以SKIPIF1<0,則SKIPIF1<0,故選:D.8.已知拋物線的方程為SKIPIF1<0,過其焦點(diǎn)F的直線交此拋物線于M.N兩點(diǎn),交y軸于點(diǎn)E,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【解析】根據(jù)條件可得F(1,0),則設(shè)直線MN的方程為y=k(x﹣1),M(x1,y1),N(x2,y2),所以E(0,﹣k),聯(lián)立SKIPIF1<0,整理可得k2x2﹣(2k2+4)x+k2=0,則x1+x2=SKIPIF1<0,x1x2=1,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以λ1(1﹣x1)=x1,λ2(1﹣x2)=x2,即有λ1=SKIPIF1<0,λ2=SKIPIF1<0,所以SKIPIF1<0.故選:D.二、多選題:本大題共4小題,每個(gè)小題5分,共20分.在每小題給出的選項(xiàng)中,只有一項(xiàng)或者多項(xiàng)是符合題目要求的.9.如圖,過點(diǎn)SKIPIF1<0作兩條直線SKIPIF1<0和SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)分別交拋物線SKIPIF1<0于SKIPIF1<0,SKIPIF1<0和SKIPIF1<0,SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0位于SKIPIF1<0軸上方),直線SKIPIF1<0,SKIPIF1<0交于點(diǎn)SKIPIF1<0.則下列說法正確的(

)A.SKIPIF1<0,SKIPIF1<0兩點(diǎn)的縱坐標(biāo)之積為SKIPIF1<0B.點(diǎn)SKIPIF1<0在定直線SKIPIF1<0上C.點(diǎn)SKIPIF1<0與拋物線上各點(diǎn)的連線中,SKIPIF1<0最短D.無論SKIPIF1<0旋轉(zhuǎn)到什么位置,始終有SKIPIF1<0【解析】設(shè)點(diǎn)SKIPIF1<0,將直線l的方程SKIPIF1<0代入拋物線方程SKIPIF1<0得:SKIPIF1<0.則SKIPIF1<0,故A正確;由題得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,消去y得SKIPIF1<0,將SKIPIF1<0代入上式得SKIPIF1<0,故點(diǎn)Q在直線SKIPIF1<0上,故B正確;設(shè)拋物線上任一點(diǎn)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最小,此時(shí)SKIPIF1<0,即SKIPIF1<0最短,故C正確;因?yàn)镾KIPIF1<0,但SKIPIF1<0,所以D錯(cuò)誤.故選:ABC.10.已知拋物線SKIPIF1<0,過其準(zhǔn)線上的點(diǎn)SKIPIF1<0作SKIPIF1<0的兩條切線,切點(diǎn)分別為A、B,下列說法正確的是(

)A.SKIPIF1<0 B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),直線AB的斜率為2 D.直線AB過定點(diǎn)SKIPIF1<0【解析】因?yàn)镾KIPIF1<0為準(zhǔn)線上的點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,故A錯(cuò);根據(jù)拋物線方程得到SKIPIF1<0,則SKIPIF1<0,設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,同理得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0為方程SKIPIF1<0的解,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故B正確;由B選項(xiàng)得SKIPIF1<0,所以SKIPIF1<0,故C錯(cuò);由B選項(xiàng)得SKIPIF1<0,又SKIPIF1<0,聯(lián)立得SKIPIF1<0,同理得SKIPIF1<0,所以直線AB的方程為SKIPIF1<0,恒過點(diǎn)SKIPIF1<0,故D正確.故選:BD.

11.已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,SKIPIF1<0、SKIPIF1<0是SKIPIF1<0上異于點(diǎn)SKIPIF1<0的兩點(diǎn)(SKIPIF1<0為坐標(biāo)原點(diǎn))則下列說法正確的是(

)A.若SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線,則SKIPIF1<0的最小值為SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0的面積為SKIPIF1<0C.若SKIPIF1<0,則直線SKIPIF1<0過定點(diǎn)SKIPIF1<0D.若SKIPIF1<0,過SKIPIF1<0的中點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0【解析】對(duì)于A選項(xiàng),易知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,當(dāng)直線SKIPIF1<0與SKIPIF1<0軸重合時(shí),直線SKIPIF1<0與拋物線SKIPIF1<0只有一個(gè)公共點(diǎn),不合乎題意,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,易知SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,故SKIPIF1<0的最小值為SKIPIF1<0,A對(duì);對(duì)于B選項(xiàng),設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,B對(duì);對(duì)于C選項(xiàng),易知SKIPIF1<0的斜率存在,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,由于直線SKIPIF1<0不過原點(diǎn),所以,SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,所以,SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以,直線SKIPIF1<0的方程為SKIPIF1<0,故直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,C錯(cuò);對(duì)于D選項(xiàng),過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,D對(duì).故選:ABD.12.已知拋物線SKIPIF1<0,SKIPIF1<0為SKIPIF1<0軸正半軸上一點(diǎn),則(

)A.存在點(diǎn)SKIPIF1<0,使得過點(diǎn)SKIPIF1<0任意作弦SKIPIF1<0,總有SKIPIF1<0為定值B.不存在點(diǎn)SKIPIF1<0,使得過點(diǎn)SKIPIF1<0任意作弦SKIPIF1<0,有SKIPIF1<0為定值C.存在點(diǎn)SKIPIF1<0,使得過點(diǎn)SKIPIF1<0任意作弦SKIPIF1<0,總有SKIPIF1<0為定值D.不存在點(diǎn)SKIPIF1<0,使得過點(diǎn)SKIPIF1<0任意作弦SKIPIF1<0,有SKIPIF1<0為定值【解析】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0+SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0,即存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0為定值SKIPIF1<0,故A正確,B錯(cuò)誤;由題意可得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,如果SKIPIF1<0為定值,則必有SKIPIF1<0,而此方程組無解,所以SKIPIF1<0不為定值,故C錯(cuò)誤,D正確.故選:AD.三、填空題:本大題共4小題,每小題5分,共20分.把答案填在答題卡中的橫線上.13.設(shè)A、B為拋物線SKIPIF1<0上的點(diǎn),且SKIPIF1<0(O為原點(diǎn)),則直線SKIPIF1<0必過的定點(diǎn)坐標(biāo)為.【解析】設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,可得直線SKIPIF1<0的方程為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,即直線SKIPIF1<0必經(jīng)過定點(diǎn)SKIPIF1<0.14.已知拋物線SKIPIF1<0和直線SKIPIF1<0,點(diǎn)SKIPIF1<0為直線SKIPIF1<0上的動(dòng)點(diǎn)(不在SKIPIF1<0軸上),以點(diǎn)SKIPIF1<0為圓心且過原點(diǎn)SKIPIF1<0的圓與直線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若直線SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的另一個(gè)交點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,記直線SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【解析】如圖,設(shè)直線SKIPIF1<0,SKIPIF1<0的方程分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0為圓的直徑,SKIPIF1<0,所以SKIPIF1<0.聯(lián)立SKIPIF1<0,消去SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,同理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.15.已知AB,CD是過拋物線SKIPIF1<0焦點(diǎn)F且互相垂直的兩弦,則SKIPIF1<0的值為.【解析】由題設(shè),直線SKIPIF1<0、SKIPIF1<0的斜率一定存在,設(shè)SKIPIF1<0為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立拋物線方程,可得SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,由SKIPIF1<0,設(shè)SKIPIF1<0為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立拋物線,可得SKIPIF1<0,同理有SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,綜上,SKIPIF1<0.16.經(jīng)過拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0的直線交此拋物線于SKIPIF1<0,SKIPIF1<0兩點(diǎn),拋物線在SKIPIF1<0,SKIPIF1<0兩點(diǎn)處的切線相交于點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0必定在直線上.(寫出此直線的方程)【解析】拋物線SKIPIF1<0中SKIPIF1<0,焦點(diǎn)為SKIPIF1<0,設(shè)直線SKIPIF1<0方程為SKIPIF1<0,代入拋物線整理得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,∴過SKIPIF1<0點(diǎn)切線斜率為SKIPIF1<0,切線方程為SKIPIF1<0,即SKIPIF1<0,同理過SKIPIF1<0點(diǎn)切線方程為SKIPIF1<0,兩式相除得SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0,所以點(diǎn)SKIPIF1<0在準(zhǔn)線SKIPIF1<0上.四、解答題:本大題共6小題,共70分.解答應(yīng)寫出必要的文字說明、證明過程或演算步驟.17.已知拋物線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是C上兩個(gè)不同的點(diǎn).(1)求證:直線SKIPIF1<0與C相切;(2)若O為坐標(biāo)原點(diǎn),SKIPIF1<0,C在A,B處的切線交于點(diǎn)P,證明:點(diǎn)P在定直線上.【解析】(1)聯(lián)立SKIPIF1<0得SKIPIF1<0,因?yàn)镾KIPIF1<0在C上,則SKIPIF1<0,所以SKIPIF1<0,因此直線SKIPIF1<0與C相切.(2)由(1)知,設(shè)SKIPIF1<0,切線SKIPIF1<0的方程為SKIPIF1<0,切線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0得SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故點(diǎn)P在定直線SKIPIF1<0上.18.設(shè)拋物線SKIPIF1<0的焦點(diǎn)為F,過F且斜率為1的直線l與E交于A,B兩點(diǎn),且SKIPIF1<0.(1)求拋物線E的方程;(2)設(shè)SKIPIF1<0為E上一點(diǎn),E在P處的切線與x軸交于Q,過Q的直線與E交于M,N兩點(diǎn),直線PM和PN的斜率分別為SKIPIF1<0和SKIPIF1<0.求證:SKIPIF1<0為定值.【解析】(1)由題意,SKIPIF1<0,直線l的方程為SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0.于是SKIPIF1<0,∴焦點(diǎn)弦SKIPIF1<0,解得p=2.故拋物線E的方程為SKIPIF1<0.(2)因SKIPIF1<0在E上,∴m=2.設(shè)E在P處的切線方程為SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0.由SKIPIF1<0,解得t=1,∴P處的切線方程為y=x+1,從而得SKIPIF1<0.易知直線MN的斜率存在,設(shè)其方程為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0.將SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0.于是SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0SKIPIF1<0.故SKIPIF1<0為定值2.19.已知過點(diǎn)SKIPIF1<0的直線交拋物線SKIPIF1<0于A,B兩點(diǎn),且SKIPIF1<0(點(diǎn)O為坐標(biāo)原點(diǎn)),M,N,P是拋物線上橫坐標(biāo)不同的三點(diǎn),直線MP過定點(diǎn)SKIPIF1<0,直線NP過定點(diǎn)SKIPIF1<0.(1)求該拋物線的標(biāo)準(zhǔn)方程;(2)證明:直線MN過定點(diǎn).【解析】(1)設(shè)直線AB方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立得SKIPIF1<0,消x得SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以拋物線的解析式為:SKIPIF1<0.(2)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镸、P、C三點(diǎn)共線,所以SKIPIF1<0,即SKIPIF1<0,①因?yàn)镹、P、D三點(diǎn)共線,所以SKIPIF1<0,即SKIPIF1<0,②直線MN方程為:SKIPIF1<0,即SKIPIF1<0③由①②得SKIPIF1<0,即SKIPIF1<0,代入③得SKIPIF1<0,所以直線MN過定點(diǎn)SKIPIF1<0.20.已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,過點(diǎn)SKIPIF1<0且傾斜角為SKIPIF1<0的直線交拋物線于點(diǎn)SKIPIF1<0(M在第一象限),SKIPIF1<0,垂足為SKIPIF1<0,直線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,SKIPIF1<0(1)求SKIPIF1<0的值.(2)若斜率不為0的直線SKIPIF1<0與拋物線SKIPIF1<0相切,切點(diǎn)為SKIPIF1<0,平行于SKIPIF1<0的直線交拋物線SKIPIF1<0于SKIPIF1<0兩點(diǎn),且SKIPIF1<0,點(diǎn)SKIPIF1<0到直線SKIPIF1<0與到直線SKIPIF1<0的距離之比是否為定值?若是,求出此定值;若不是,請(qǐng)說明理由.【解析】(1)如圖所示,過點(diǎn)SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,由題得SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以△SKIPIF1<0是等邊三角形,因?yàn)镾KIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.

(2)由(1)可知拋物線的方程是SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.聯(lián)立SKIPIF1<0,消去SKIPIF1<0,得SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.設(shè)點(diǎn)SKIPIF1<0到直線SKIPIF1<0和直線SKIPIF1<0的距離分別為SKIPIF1<0,則由SKIPIF1<0得SKIPIF1<0,所以點(diǎn)SKIPIF1<0到直線SKIPIF1<0與到直線SKIPIF1<0的距離之比是定值,定值為3.21.已知?jiǎng)訄ASKIPIF1<0與圓SKIPIF1<0外切,與SKIPIF1<0軸相切,記圓心SKIPIF1<0的軌跡為曲線SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)若斜率為4的直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點(diǎn),直線SKIPIF1<0、SKIPIF1<0分別交曲線SKIPIF1<0于另一點(diǎn)SKIPIF1<0、SKIPIF1<0,證明:直線SKIPIF1<0過定點(diǎn).【解析】(1)設(shè)SKIPIF1<0,動(dòng)圓的半徑為SKIPIF1<0,圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為1,因?yàn)閯?dòng)圓SKIPIF1<0與圓SKIPIF1<0外切,可得SKIPIF1<0或SKIPIF1<0,化為SKIPIF1<0或SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程為:SKIPIF1<0或SKIPIF1<0.(2)

證明:設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0,化為SKIPIF1<0,△SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,與SKIPIF1<0聯(lián)立,解得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.同理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以直線SKIPIF1<0的方程為:SKIPIF1<0,化為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)對(duì)應(yīng)系數(shù)相等可得SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,所以直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0,SKIPIF1<0.22.已知拋物線E:SKIPIF1<0(p>0),過點(diǎn)SKIPIF1<0的兩條直線l1,l2分別交E于AB兩點(diǎn)和C,D兩點(diǎn).當(dāng)l1的斜率為SKIPIF1<0時(shí),SKIPIF1<0(1)求E的標(biāo)準(zhǔn)方程:(2)設(shè)G為直線AD與BC的交點(diǎn),證明:點(diǎn)G必在定直線上.【解析】(1)當(dāng)SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論