2025屆曲線運(yùn)動(dòng)單元測試題高三壓軸卷數(shù)學(xué)試卷含解析_第1頁
2025屆曲線運(yùn)動(dòng)單元測試題高三壓軸卷數(shù)學(xué)試卷含解析_第2頁
2025屆曲線運(yùn)動(dòng)單元測試題高三壓軸卷數(shù)學(xué)試卷含解析_第3頁
2025屆曲線運(yùn)動(dòng)單元測試題高三壓軸卷數(shù)學(xué)試卷含解析_第4頁
2025屆曲線運(yùn)動(dòng)單元測試題高三壓軸卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆曲線運(yùn)動(dòng)單元測試題高三壓軸卷數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題2.已知函數(shù)是偶函數(shù),當(dāng)時(shí),函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.3.對于函數(shù),若滿足,則稱為函數(shù)的一對“線性對稱點(diǎn)”.若實(shí)數(shù)與和與為函數(shù)的兩對“線性對稱點(diǎn)”,則的最大值為()A. B. C. D.4.設(shè)為虛數(shù)單位,為復(fù)數(shù),若為實(shí)數(shù),則()A. B. C. D.5.函數(shù)f(x)=2x-3A.[32C.[326.已知集合,集合,那么等于()A. B. C. D.7.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.8.已知下列命題:①“”的否定是“”;②已知為兩個(gè)命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④9.下列判斷錯(cuò)誤的是()A.若隨機(jī)變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機(jī)變量服從二項(xiàng)分布:,則D.是的充分不必要條件10.己知全集為實(shí)數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)11.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是由一個(gè)棱柱挖去一個(gè)棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.3212.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)為偶函數(shù),則.14.若x,y均為正數(shù),且,則的最小值為________.15.如圖,在平面四邊形中,點(diǎn),是橢圓短軸的兩個(gè)端點(diǎn),點(diǎn)在橢圓上,,記和的面積分別為,,則______.16.在平面直角坐標(biāo)系中,雙曲線(,)的左頂點(diǎn)為A,右焦點(diǎn)為F,過F作x軸的垂線交雙曲線于點(diǎn)P,Q.若為直角三角形,則該雙曲線的離心率是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論函數(shù)的極值;(2)記關(guān)于的方程的兩根分別為,求證:.18.(12分)在中,,.已知分別是的中點(diǎn).將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)已知射線與曲線交于兩點(diǎn),射線與直線交于點(diǎn),若的面積為1,求的值和弦長.20.(12分)已知函數(shù)(Ⅰ)若,求曲線在點(diǎn)處的切線方程;(Ⅱ)若在上恒成立,求實(shí)數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項(xiàng)和,,求證:數(shù)列的前項(xiàng)和.21.(12分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線與直線的直角坐標(biāo)方程;(2)若曲線與直線交于兩點(diǎn),求的值.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若不等式對恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對,都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.2、A【解析】

根據(jù)圖象關(guān)于軸對稱可知關(guān)于對稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對稱圖象關(guān)于對稱時(shí),單調(diào)遞減時(shí),單調(diào)遞增又且,即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)奇偶性、對稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調(diào)性,通過自變量的大小關(guān)系求得結(jié)果.3、D【解析】

根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對稱點(diǎn)”,所以,故(當(dāng)且僅當(dāng)時(shí)取等號).又與為函數(shù)的“線性對稱點(diǎn),所以,所以,從而的最大值為.故選:D.【點(diǎn)睛】本題以新定義為背景,考查指數(shù)函數(shù)的運(yùn)算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達(dá)式是解題的關(guān)鍵,屬于中檔題.4、B【解析】

可設(shè),將化簡,得到,由復(fù)數(shù)為實(shí)數(shù),可得,解方程即可求解【詳解】設(shè),則.由題意有,所以.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的模長、除法運(yùn)算,由復(fù)數(shù)的類型求解對應(yīng)參數(shù),屬于基礎(chǔ)題5、A【解析】

根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因?yàn)楹瘮?shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點(diǎn)睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構(gòu)造使解析式有意義的不等式(組)求解;(2)對實(shí)際問題:由實(shí)際意義及使解析式有意義構(gòu)成的不等式(組)求解;(3)若已知函數(shù)fx的定義域?yàn)閍,b,則函數(shù)fgx6、A【解析】

求出集合,然后進(jìn)行并集的運(yùn)算即可.【詳解】∵,,∴.故選:A.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運(yùn)算,屬于基礎(chǔ)題.7、B【解析】

由題意得出的值,進(jìn)而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計(jì)算較為方便,考查計(jì)算能力,屬于基礎(chǔ)題.8、B【解析】

由命題的否定,復(fù)合命題的真假,充分必要條件,四種命題的關(guān)系對每個(gè)命題進(jìn)行判斷.【詳解】“”的否定是“”,正確;已知為兩個(gè)命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯(cuò)誤;“若,則且”是假命題,則它的逆否命題為假命題,錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查命題真假判斷,掌握四種命題的關(guān)系,復(fù)合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ).9、D【解析】

根據(jù)正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識,依次對四個(gè)選項(xiàng)加以分析判斷,進(jìn)而可求解.【詳解】對于選項(xiàng),若隨機(jī)變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項(xiàng)正確,不符合題意;對于選項(xiàng),已知直線平面,直線平面,則當(dāng)時(shí)一定有,充分性成立,而當(dāng)時(shí),不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項(xiàng)正確,不符合題意;對于選項(xiàng),若隨機(jī)變量服從二項(xiàng)分布:,則,故選項(xiàng)正確,不符合題意;對于選項(xiàng),,僅當(dāng)時(shí)有,當(dāng)時(shí),不成立,故充分性不成立;若,僅當(dāng)時(shí)有,當(dāng)時(shí),不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項(xiàng)不正確,符合題意.故選:D【點(diǎn)睛】本題考查正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識,考查理解辨析能力與運(yùn)算求解能力,屬于基礎(chǔ)題.10、D【解析】

求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補(bǔ)集與交集的運(yùn)算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,

∴A={x|x2+2x-8>0}={x|x<-4或x>2},

由log2x<1,x>0,得0<x<2,

∴B={x|log2x<1}={x|0<x<2},

則,

∴.

故選:D.【點(diǎn)睛】本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.11、B【解析】

由三視圖可知該幾何體是一個(gè)底面邊長為4的正方形,高為5的正四棱柱,挖去一個(gè)底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解?!驹斀狻坑深}意,幾何體的三視圖可知該幾何體是一個(gè)底面邊長為4的正方形,高為5的正四棱柱,挖去一個(gè)底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B?!军c(diǎn)睛】本題考查了幾何體的三視圖及體積的計(jì)算,在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實(shí)線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解。12、A【解析】

作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因?yàn)槠矫嫫矫?平面.故,故平面.故二面角為.又直線與平面所成角為,因?yàn)?故.故,當(dāng)且僅當(dāng)重合時(shí)取等號.又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當(dāng)且僅當(dāng)平面時(shí)取等號.故.故選:A【點(diǎn)睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時(shí)運(yùn)用線面角的最小性進(jìn)行判定.屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),.考點(diǎn):函數(shù)的奇偶性.【方法點(diǎn)晴】本題考查導(dǎo)函數(shù)的奇偶性以及邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力、特殊與一般思想、數(shù)形結(jié)合思想與轉(zhuǎn)化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉(zhuǎn)化思想,將函數(shù)為偶函數(shù)轉(zhuǎn)化為函數(shù)為奇函數(shù),然后再利用特殊與一般思想,?。?4、4【解析】

由基本不等式可得,則,即可解得.【詳解】方法一:,當(dāng)且僅當(dāng)時(shí)取等.方法二:因?yàn)?,所以,所以,?dāng)且僅當(dāng)時(shí)取等.故答案為:.【點(diǎn)睛】本題考查基本不等式在求最小值中的應(yīng)用,考查學(xué)生對基本不等式的靈活使用,難度較易.15、【解析】

依題意易得A、B、C、D四點(diǎn)共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進(jìn)一步得到D橫坐標(biāo),再由計(jì)算比值即可.【詳解】因?yàn)?,所以A、B、C、D四點(diǎn)共圓,直徑為,又A、C關(guān)于x軸對稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點(diǎn)是E,所以D的橫坐標(biāo)為,故.故答案為:.【點(diǎn)睛】本題考查橢圓中的四點(diǎn)共圓及三角形面積之比的問題,考查學(xué)生基本計(jì)算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸填空題.16、2【解析】

根據(jù)是等腰直角三角形,且為中點(diǎn)可得,再由雙曲線的性質(zhì)可得,解出即得.【詳解】由題,設(shè)點(diǎn),由,解得,即線段,為直角三角形,,且,又為雙曲線右焦點(diǎn),過點(diǎn),且軸,,可得,,整理得:,即,又,.故答案為:【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì),是??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】

(1)對函數(shù)求導(dǎo),對參數(shù)討論,得函數(shù)單調(diào)區(qū)間,進(jìn)而求出極值;(2)是方程的兩根,代入方程,化簡換元,構(gòu)造新函數(shù)利用函數(shù)單調(diào)性求最值可解.【詳解】(1)依題意,;若,則,則函數(shù)在上單調(diào)遞增,此時(shí)函數(shù)既無極大值,也無極小值;若,則,令,解得,故當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,此時(shí)函數(shù)有極大值,無極小值;若,則,令,解得,故當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,此時(shí)函數(shù)有極大值,無極小值;(2)依題意,,則,,故,;要證:,即證,即證:,即證,設(shè),只需證:,設(shè),則,故在上單調(diào)遞增,故,即,故.【點(diǎn)睛】本題考查函數(shù)極值及利用導(dǎo)數(shù)證明二元不等式.證明二元不等式常用方法是轉(zhuǎn)化為證明一元不等式,再轉(zhuǎn)化為函數(shù)最值問題.利用導(dǎo)數(shù)證明不等式的基本方法:(1)若與的最值易求出,可直接轉(zhuǎn)化為證明;(2)若與的最值不易求出,可構(gòu)造函數(shù),然后根據(jù)函數(shù)的單調(diào)性或最值,證明.18、(1)證明見解析(2)45°【解析】

(1)設(shè)的中點(diǎn)為,連接,設(shè)的中點(diǎn)為,連接,,從而即為二面角的平面角,,推導(dǎo)出,從而平面,則,即,進(jìn)而平面,推導(dǎo)四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點(diǎn),在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標(biāo)系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點(diǎn),∴.設(shè)的中點(diǎn)為,連接.設(shè)的中點(diǎn)為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點(diǎn).易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點(diǎn).∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標(biāo)系,設(shè).則,,,,顯然平面的法向量,設(shè)平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.【點(diǎn)睛】本題主要考查立體幾何中面面垂直的證明以及求解二面角大小,難度一般,通??刹捎脦缀畏椒ê拖蛄糠椒▋煞N進(jìn)行求解.19、(1),;(2).【解析】

(1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標(biāo)方程;(2)聯(lián)立極坐標(biāo)方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標(biāo)方程為:.轉(zhuǎn)換為極坐標(biāo)方程為:,即.曲線的參數(shù)方程是(為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為:,化為一般式得化為極坐標(biāo)方程為:.

(2)由于,得,.所以,所以,由于,所以,所以.【點(diǎn)睛】本題主要考查參數(shù)方程與普通方程的互化、直角坐標(biāo)方程與極坐標(biāo)方程的互化,熟記公式即可,屬于??碱}型.20、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導(dǎo)后討論當(dāng)時(shí)和時(shí)的單調(diào)性證明,求出實(shí)數(shù)的取值范圍先求出、的通項(xiàng)公式,利用當(dāng)時(shí),得,下面證明:解析:(Ⅰ)因?yàn)椋?,,切點(diǎn)為.由,所以,所以曲線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論