湖北省隨州市重點中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第1頁
湖北省隨州市重點中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第2頁
湖北省隨州市重點中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第3頁
湖北省隨州市重點中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第4頁
湖北省隨州市重點中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省隨州市重點中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若則實數(shù)的取值范圍是()A. B. C. D.2.設(shè)集合,,則集合A. B. C. D.3.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或4.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.85.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.26.將函數(shù)f(x)=sin3x-cos3x+1的圖象向左平移個單位長度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:①它的圖象關(guān)于直線x=對稱;②它的最小正周期為;③它的圖象關(guān)于點(,1)對稱;④它在[]上單調(diào)遞增.其中所有正確結(jié)論的編號是()A.①② B.②③ C.①②④ D.②③④7.網(wǎng)格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.48.已知是等差數(shù)列的前項和,,,則()A.85 B. C.35 D.9.已知函數(shù),集合,,則()A. B.C. D.10.?dāng)?shù)列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.411.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結(jié)論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值12.已知復(fù)數(shù),則()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,點在單位圓上,設(shè),且.若,則的值為________________.14.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.15.如圖,在正四棱柱中,P是側(cè)棱上一點,且.設(shè)三棱錐的體積為,正四棱柱的體積為V,則的值為________.16.設(shè)平面向量與的夾角為,且,,則的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中.(1)當(dāng)時,求在的切線方程;(2)求證:的極大值恒大于0.18.(12分)平面直角坐標(biāo)系中,曲線:.直線經(jīng)過點,且傾斜角為,以為極點,軸正半軸為極軸,建立極坐標(biāo)系.(1)寫出曲線的極坐標(biāo)方程與直線的參數(shù)方程;(2)若直線與曲線相交于,兩點,且,求實數(shù)的值.19.(12分)已知函數(shù),.(1)若對于任意實數(shù),恒成立,求實數(shù)的范圍;(2)當(dāng)時,是否存在實數(shù),使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.20.(12分)在以為頂點的五面體中,底面為菱形,,,,二面角為直二面角.(Ⅰ)證明:;(Ⅱ)求二面角的余弦值.21.(12分)在直角坐標(biāo)系中,圓的參數(shù)方程為:(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,且長度單位相同.(1)求圓的極坐標(biāo)方程;(2)若直線:(為參數(shù))被圓截得的弦長為,求直線的傾斜角.22.(10分)已知滿足,且,求的值及的面積.(從①,②,③這三個條件中選一個,補充到上面問題中,并完成解答.)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運算求解的能力,屬于中檔題,2、B【解析】

先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【點睛】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數(shù)化為正數(shù),且不等號的另一邊化為,然后通過因式分解,求得對應(yīng)的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.3、D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.4、B【解析】

建立平面直角坐標(biāo)系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達(dá)的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標(biāo)系如下圖所示,設(shè),,且,由于,所以..所以,即..當(dāng)且僅當(dāng)時取得最小值,此時由得,當(dāng)時,有最小值為,即,,解得.所以當(dāng)且僅當(dāng)時有最小值為.故選:B【點睛】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運用,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.5、B【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時,有最大值為,即,故..當(dāng),即時等號成立.故選:.【點睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.6、B【解析】

根據(jù)函數(shù)圖象的平移變換公式求出函數(shù)的解析式,再利用正弦函數(shù)的對稱性、單調(diào)區(qū)間等相關(guān)性質(zhì)求解即可.【詳解】因為f(x)=sin3x-cos3x+1=2sin(3x-)+1,由圖象的平移變換公式知,函數(shù)g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;令3x+=kπ+,得x=+(k∈Z),所以x=不是對稱軸,故①錯誤;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函數(shù)g(x)的圖象關(guān)于點(,1)對稱,故③正確;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④錯誤;故選:B【點睛】本題考查圖象的平移變換和正弦函數(shù)的對稱性、單調(diào)性和最小正周期等性質(zhì);考查運算求解能力和整體代換思想;熟練掌握正弦函數(shù)的對稱性、單調(diào)性和最小正周期等相關(guān)性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型7、A【解析】

采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點與線,屬中檔題.8、B【解析】

將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數(shù)列通項公式的基本量計算,考查等差數(shù)列前項和的計算,屬于基礎(chǔ)題.9、C【解析】

分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點睛】本題主要考查了集合的基本運算,難度容易.10、D【解析】

用去換中的n,得,相加即可找到數(shù)列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數(shù)列的應(yīng)用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.11、B【解析】

根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.12、C【解析】

根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點睛】本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)三角函數(shù)定義表示出,由同角三角函數(shù)關(guān)系式結(jié)合求得,而,展開后即可由余弦差角公式求得的值.【詳解】點在單位圓上,設(shè),由三角函數(shù)定義可知,因為,則,所以由同角三角函數(shù)關(guān)系式可得,所以故答案為:.【點睛】本題考查了三角函數(shù)定義,同角三角函數(shù)關(guān)系式的應(yīng)用,余弦差角公式的應(yīng)用,屬于中檔題.14、【解析】

根據(jù)題意,由雙曲線的漸近線方程可得,即a=2b,進(jìn)而由雙曲線的幾何性質(zhì)可得cb,由雙曲線的離心率公式計算可得答案.【詳解】根據(jù)題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是分析a、b之間的關(guān)系,屬于基礎(chǔ)題.15、【解析】

設(shè)正四棱柱的底面邊長,高,再根據(jù)柱體、錐體的體積公式計算可得.【詳解】解:設(shè)正四棱柱的底面邊長,高,則,即故答案為:【點睛】本題考查柱體、錐體的體積計算,屬于基礎(chǔ)題.16、【解析】

根據(jù)已知條件計算出,結(jié)合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進(jìn)而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)求導(dǎo),代入,求出在處的導(dǎo)數(shù)值及函數(shù)值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當(dāng)時,,,則在的切線方程為;(2)證明:令,解得或,①當(dāng)時,恒成立,此時函數(shù)在上單調(diào)遞減,∴函數(shù)無極值;②當(dāng)時,令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴;③當(dāng)時,令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴,綜上,函數(shù)的極大值恒大于0.【點睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.18、(Ⅰ)(t為參數(shù));(Ⅱ)或或.【解析】

試題分析:本題主要考查極坐標(biāo)方程、參數(shù)方程與直角方程的相互轉(zhuǎn)化、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,用,化簡表達(dá)式,得到曲線的極坐標(biāo)方程,由已知點和傾斜角得到直線的參數(shù)方程;第二問,直線方程與曲線方程聯(lián)立,消參,解出的值.試題解析:(1)即,.(2),符合題意考點:本題主要考查:1.極坐標(biāo)方程,參數(shù)方程與直角方程的相互轉(zhuǎn)化;2.直線與拋物線的位置關(guān)系.19、(1);(2)不存在實數(shù),使曲線在點處的切線與軸垂直.【解析】

(1)分類時,恒成立,時,分離參數(shù)為,引入新函數(shù),利用導(dǎo)數(shù)求得函數(shù)最值即可;(2),導(dǎo)出導(dǎo)函數(shù),問題轉(zhuǎn)化為在上有解.再用導(dǎo)數(shù)研究的性質(zhì)可得.【詳解】解:(1)因為當(dāng)時,恒成立,所以,若,為任意實數(shù),恒成立.若,恒成立,即當(dāng)時,,設(shè),,當(dāng)時,,則在上單調(diào)遞增,當(dāng)時,,則在上單調(diào)遞減,所以當(dāng)時,取得最大值.,所以,要使時,恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設(shè),則,當(dāng)時,,故在上為增函數(shù),因此在區(qū)間上的最小值,所以,當(dāng)時,,,所以,曲線在點處的切線與軸垂直等價于方程在上有實數(shù)解.而,即方程無實數(shù)解.故不存在實數(shù),使曲線在點處的切線與軸垂直.【點睛】本題考查不等式恒成立,考查用導(dǎo)數(shù)的幾何意義,由導(dǎo)數(shù)幾何把問題進(jìn)行轉(zhuǎn)化是解題關(guān)鍵.本題屬于困難題.20、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)連接交于點,取中點,連結(jié),證明平面得到答案.(Ⅱ)分別以為軸建立如圖所示的空間直角坐標(biāo)系,平面的法向量為,平面的法向量為,計算夾角得到答案.【詳解】(Ⅰ)連接交于點,取中點,連結(jié)因為為菱形,所以.因為,所以.因為二面角為直二面角,所以平面平面,且平面平面,所以平面所以因為所以是平行四邊形,所以.所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知兩兩垂直,分別以為軸建立如圖所示的空間直角坐標(biāo)系.設(shè)設(shè)平面的法向量為,由,取.平面的法向量為.所以二面角余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力.21、(1);(2)或【解析】

(1)消去參數(shù)可得圓的直角坐標(biāo)方程,再根據(jù),,即可得極坐標(biāo)方程;(2)寫出直線的極坐標(biāo)方程為,代入圓的極坐標(biāo)方程,根據(jù)極坐標(biāo)的意義列出等式解出即可.【詳解】(1)圓:,消去參數(shù)得:,即:,∵,,.∴,.(2)∵直線:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論