版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第一篇熱點(diǎn)、難點(diǎn)突破篇專題13數(shù)列的通項(xiàng)與數(shù)列的求和(練)【對點(diǎn)演練】一、單選題1.(2022·四川宜賓·統(tǒng)考模擬預(yù)測)南宋數(shù)學(xué)家楊輝給出了著名的三角垛公式:SKIPIF1<0SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】因?yàn)镾KIPIF1<0,根據(jù)題意結(jié)合分組求和運(yùn)算求解.【詳解】∵SKIPIF1<0,由題意可得:數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,又∵SKIPIF1<0,∴數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0SKIPIF1<0.故選:A.2.(2022秋·浙江金華·高三期末)1883年,德國數(shù)學(xué)家康托提出了三分康托集,亦稱康托爾集.下圖是其構(gòu)造過程的圖示,其詳細(xì)構(gòu)造過程可用文字描述為:第一步,把閉區(qū)間SKIPIF1<0平均分成三段,去掉中間的一段,剩下兩個閉區(qū)間SKIPIF1<0和SKIPIF1<0;第二步,將剩下的兩個閉區(qū)間分別平均分為三段,各自去掉中間的一段,剩下四段閉區(qū)間:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;如此不斷的構(gòu)造下去,最后剩下的各個區(qū)間段就構(gòu)成了三分康托集.若經(jīng)歷SKIPIF1<0步構(gòu)造后,所有去掉的區(qū)間長度和為(
)(注:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0的區(qū)間長度均為SKIPIF1<0)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)“康托爾三分集”的定義,分別求得前幾次的剩余區(qū)間長度的和,求得其通項(xiàng)公式,可得第SKIPIF1<0次操作剩余區(qū)間的長度和,即可得解.【詳解】解:將定義SKIPIF1<0的區(qū)間長度為SKIPIF1<0,根據(jù)“康托爾三分集”的定義可得:每次去掉的區(qū)間長組成的數(shù)為以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,第1次操作去掉的區(qū)間長為SKIPIF1<0,剩余區(qū)間的長度和為SKIPIF1<0,第2次操作去掉兩個區(qū)間長為SKIPIF1<0的區(qū)間,剩余區(qū)間的長度和為SKIPIF1<0,第3次操作去掉四個區(qū)間長為SKIPIF1<0的區(qū)間,剩余區(qū)間的長度和為SKIPIF1<0,第4次操作去掉8個區(qū)間長為SKIPIF1<0,剩余區(qū)間的長度和為SKIPIF1<0,SKIPIF1<0第SKIPIF1<0次操作去掉SKIPIF1<0個區(qū)間長為SKIPIF1<0,剩余區(qū)間的長度和為SKIPIF1<0,所以SKIPIF1<0;設(shè)定義區(qū)間為SKIPIF1<0,則區(qū)間長度為1,所以第SKIPIF1<0次操作剩余區(qū)間的長度和為SKIPIF1<0,則去掉的區(qū)間長度和為SKIPIF1<0.故選:B3.(2022·重慶沙坪壩·重慶八中??寄M預(yù)測)中國古代的武成王廟是專門祭祀姜太公以及歷代良臣名將的廟宇,這類廟宇的頂部構(gòu)造頗有講究.如圖是某武成王廟頂部的剖面直觀圖,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且數(shù)列SKIPIF1<0是第二項(xiàng)為SKIPIF1<0的等差數(shù)列.若以SKIPIF1<0為坐標(biāo)原點(diǎn),以SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0軸正方向建立平面直角坐標(biāo)系,則直線SKIPIF1<0的斜率為(
)A.0.4 B.0.45 C.0.5 D.0.55【答案】A【分析】根據(jù)數(shù)列SKIPIF1<0是第二項(xiàng)為SKIPIF1<0的等差數(shù)列可得SKIPIF1<0,令SKIPIF1<0,則根據(jù)題干可得:SKIPIF1<0,再根據(jù)等差數(shù)列的性質(zhì)即可求解.【詳解】由題意可知:SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)閿?shù)列SKIPIF1<0是第二項(xiàng)為SKIPIF1<0的等差數(shù)列,設(shè)公差為SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,同理SKIPIF1<0則直線SKIPIF1<0的斜率SKIPIF1<0,故選:SKIPIF1<0.4.(2022秋·北京·高三統(tǒng)考階段練習(xí))“楊輝三角”是中國古代數(shù)學(xué)文化的瑰寶之一,最早出現(xiàn)在中國南宋數(shù)學(xué)家楊輝于1261年所著的《詳解九章算法》一書中.如圖,若在“楊輝三角”中從第2行右邊的1開始按“鋸齒形”排列的箭頭所指的數(shù)依次構(gòu)成一個數(shù)列:1,2,3,3,6,4,10,5,…,則此數(shù)列的前20項(xiàng)的和為(
)A.350 B.295 C.285 D.230【答案】C【分析】利用分組求和法和組合數(shù)的性質(zhì)進(jìn)行求解即可【詳解】記此數(shù)列的前20項(xiàng)的和為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故選:C.二、多選題5.(2022秋·吉林·高三東北師大附中??茧A段練習(xí))十二平均律是我國明代音樂理論家和數(shù)學(xué)家朱載堉發(fā)明的.明萬歷十二年(公元1584年),他寫成《律學(xué)新說》,提出了十二平均律的理論.十二平均律的數(shù)學(xué)意義是:在1和2之間插入11個數(shù),使包含1和2的這13個數(shù)依次成遞增的等比數(shù)列,記插入的11個數(shù)之和為M,則依此規(guī)則,下列結(jié)論正確的有(
)A.SKIPIF1<0 B.該等比數(shù)列的公比為SKIPIF1<0C.插入的第9個數(shù)是插入的第5個數(shù)的SKIPIF1<0倍 D.SKIPIF1<0【答案】CD【分析】首先根據(jù)題意求出等比數(shù)列的公比以及SKIPIF1<0,可以判斷BCD,再利用不等式證明A即可說明A錯誤.【詳解】由題意知,該數(shù)成等比數(shù)列記為SKIPIF1<0,公比記為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由等比數(shù)列性質(zhì)可知SKIPIF1<0,解得SKIPIF1<0,故B錯誤;記插入的11個數(shù)之和為M,則SKIPIF1<0,則D正確;因?yàn)镾KIPIF1<0,則插入的第9個數(shù)是SKIPIF1<0,插入的第5個數(shù)為SKIPIF1<0,則SKIPIF1<0,故C正確;對于A,若SKIPIF1<0,則SKIPIF1<0,化簡得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,但SKIPIF1<0,故A錯誤.故選:CD三、填空題6.(2022秋·湖北·高三校聯(lián)考期中)“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作SKIPIF1<0孫子算經(jīng)SKIPIF1<0卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何SKIPIF1<0現(xiàn)有這樣一個相關(guān)的問題:被SKIPIF1<0除余SKIPIF1<0且被SKIPIF1<0除余SKIPIF1<0的正整數(shù)按照從小到大的順序排成一列,構(gòu)成數(shù)列SKIPIF1<0,記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0的最小值為__________.【答案】SKIPIF1<0【分析】先由“兩個等差數(shù)列的公共項(xiàng)構(gòu)成的新的等差數(shù)列的公差為兩個等差數(shù)列公差的最小公倍數(shù)”得SKIPIF1<0,再應(yīng)用基本不等式求得SKIPIF1<0的最小值.【詳解】解:被SKIPIF1<0除余SKIPIF1<0且被SKIPIF1<0除余SKIPIF1<0的正整數(shù)按照從小到大的順序所構(gòu)成的數(shù)列是一個首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,∴SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題7.(2022·上海浦東新·統(tǒng)考一模)已知數(shù)列SKIPIF1<0是公差不為0的等差數(shù)列,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求當(dāng)n為何值時,數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0取得最大值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0取得最大值.【分析】(1)根據(jù)題意列出關(guān)于公差SKIPIF1<0的方程,求得d,可得答案;(2)等差數(shù)列的前n項(xiàng)和公式求SKIPIF1<0,結(jié)合二次函數(shù)性質(zhì)求最大值.【詳解】(1)設(shè)數(shù)列SKIPIF1<0的公差為d,SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0或5時,SKIPIF1<0取得最大值,最大值為10.8.(2022秋·重慶沙坪壩·高三重慶八中??茧A段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)令SKIPIF1<0,求證:數(shù)列SKIPIF1<0為等差數(shù)列,并求SKIPIF1<0;(2)記SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)證明見解析,SKIPIF1<0(2)SKIPIF1<0【分析】(1)當(dāng)SKIPIF1<0為奇數(shù)時,可得SKIPIF1<0,即可證明數(shù)列SKIPIF1<0的奇數(shù)項(xiàng)成等差數(shù)列,且首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0,根據(jù)公式即可得通項(xiàng)公式;(2)當(dāng)SKIPIF1<0為偶數(shù)時,可得SKIPIF1<0,即可得SKIPIF1<0的偶數(shù)項(xiàng)SKIPIF1<0成等比數(shù)列,首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0,從而得SKIPIF1<0,利用錯位相減求和即可.【詳解】(1)證明:當(dāng)SKIPIF1<0為奇數(shù),SKIPIF1<0,即數(shù)列SKIPIF1<0的奇數(shù)項(xiàng)SKIPIF1<0成等差數(shù)列,且首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,(2)解:當(dāng)SKIPIF1<0為偶數(shù),SKIPIF1<0,即數(shù)列SKIPIF1<0的偶數(shù)項(xiàng)SKIPIF1<0成等比數(shù)列,首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,兩式相減得SKIPIF1<0SKIPIF1<0SKIPIF1<0,故SKIPIF1<0.9.(2022秋·江蘇蘇州·高三統(tǒng)考階段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)由SKIPIF1<0與SKIPIF1<0之間的關(guān)系式求SKIPIF1<0的通項(xiàng)公式;由SKIPIF1<0,可得SKIPIF1<0,求出數(shù)列SKIPIF1<0的通項(xiàng)公式即可求出數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)利用錯位相減求解即可.【詳解】(1)解:當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因?yàn)镾KIPIF1<0符合SKIPIF1<0,所以SKIPIF1<0;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為3,公比為3的等比數(shù)列.所以SKIPIF1<0.所以SKIPIF1<0;(2)解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,兩式相減得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<010.(2022秋·河南·高三洛陽市第一高級中學(xué)校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,遞增的等比數(shù)列SKIPIF1<0滿足:SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0的前SKIPIF1<0項(xiàng)和分別為SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0【分析】(1)根據(jù)SKIPIF1<0,求出SKIPIF1<0,再利用等比數(shù)列的性質(zhì)結(jié)合韋達(dá)定理求出SKIPIF1<0,得到公比,寫出通項(xiàng)公式;(2)證明出SKIPIF1<0為等差數(shù)列,從而利用等差數(shù)列求和公式和等比數(shù)列求和公式進(jìn)行求解.【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0,滿足上式故SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0可看作方程SKIPIF1<0的兩根,解得:SKIPIF1<0或SKIPIF1<0,因?yàn)榈缺葦?shù)列單調(diào)遞增,所以SKIPIF1<0舍去,故SKIPIF1<0,解得:SKIPIF1<0,故SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0;(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0為等差數(shù)列,由等差數(shù)列求和公式得:SKIPIF1<0,由等比數(shù)列求和公式得:SKIPIF1<0.【沖刺提升】解答題1.(2023·全國·高三專題練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0,點(diǎn)SKIPIF1<0在直線SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且滿SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)是否存在SKIPIF1<0,使得對任意的SKIPIF1<0,都有SKIPIF1<0.【答案】(1)SKIPIF1<0;SKIPIF1<0(2)存在SKIPIF1<0,2,使得對任意的SKIPIF1<0,都有SKIPIF1<0【分析】(1)根據(jù)等差數(shù)列的定義可得SKIPIF1<0為等差數(shù)列,由SKIPIF1<0的關(guān)系可得SKIPIF1<0為等比數(shù)列,進(jìn)而可求其通項(xiàng),(2)根據(jù)數(shù)列的單調(diào)性求解最值即可求解.【詳解】(1)點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0又SKIPIF1<0,∴SKIPIF1<0,則數(shù)列SKIPIF1<0是首項(xiàng)為1,公差為2的等差數(shù)列.∴SKIPIF1<0又當(dāng)SKIPIF1<0時,SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0,由SKIPIF1<0
①,得SKIPIF1<0
②由①-②整理得:SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴數(shù)列SKIPIF1<0是首項(xiàng)為3,公比為3的等比數(shù)列,故SKIPIF1<0(2)設(shè)SKIPIF1<0,由SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0或2時,SKIPIF1<0取得最大值,即SKIPIF1<0取得最大所以存在SKIPIF1<0,2,使得對任意的SKIPIF1<0,都有SKIPIF1<02.(2022秋·安徽·高三校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0各項(xiàng)均為正數(shù),且SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用已知條件因式分解變形,結(jié)合條件得SKIPIF1<0,可知數(shù)列為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式求解即可;(2)由(1)將SKIPIF1<0帶入SKIPIF1<0化簡,寫出前SKIPIF1<0項(xiàng)和SKIPIF1<0的表達(dá)式,根據(jù)條件及性質(zhì)求出SKIPIF1<0的取值范圍.【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,因?yàn)镾KIPIF1<0各項(xiàng)均為正數(shù),SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為4,公差為4的等差數(shù)列,SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)因?yàn)镾KIPIF1<0所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.3.(2022·四川資陽·統(tǒng)考二模)已知SKIPIF1<0為等差數(shù)列,且SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,求SKIPIF1<0成立的n的最大值.【答案】(1)SKIPIF1<0(2)7【分析】(1)代入公式求出公差即可求通項(xiàng)公式;(2)代入等比數(shù)列的前SKIPIF1<0項(xiàng)和公式即可.【詳解】(1)設(shè)數(shù)列SKIPIF1<0的公差為:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.SKIPIF1<0SKIPIF1<0,即SKIPIF1<0.(2)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0為等比數(shù)列,所以SKIPIF1<0由SKIPIF1<0,即SKIPIF1<0,化簡得:SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以,要使SKIPIF1<0成立的n的最大值為:7.4.(2022秋·江蘇徐州·高三期末)設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列.(1)求SKIPIF1<0的通項(xiàng)公式;(2)證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列可得SKIPIF1<0,再利用SKIPIF1<0與SKIPIF1<0的關(guān)系進(jìn)行求解;(2)將SKIPIF1<0代入SKIPIF1<0,得出數(shù)列SKIPIF1<0為等比數(shù)列,再使用等比數(shù)列前SKIPIF1<0項(xiàng)和公式進(jìn)行證明.【詳解】(1)∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,∴SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0,有SKIPIF1<0,兩式相減得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴數(shù)列SKIPIF1<0中各項(xiàng)均不為SKIPIF1<0,∴SKIPIF1<0(SKIPIF1<0),∴數(shù)列SKIPIF1<0是首項(xiàng)SKIPIF1<0,公比SKIPIF1<0的等比數(shù)列,∴數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由第(1)問,數(shù)列SKIPIF1<0是首項(xiàng)SKIPIF1<0,公比SKIPIF1<0的等比數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(SKIPIF1<0),∴數(shù)列SKIPIF1<0,即SKIPIF1<0是首項(xiàng)SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0得證.5.(2022·全國·高三校聯(lián)考階段練習(xí))已知各項(xiàng)均為正數(shù)的等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,4是SKIPIF1<0,SKIPIF1<0的等比中項(xiàng),且SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,試比較SKIPIF1<0與SKIPIF1<0的大小,并說明理由.【答案】(1)SKIPIF1<0(2)SKIPIF1<0,理由見解析【分析】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,結(jié)合等比中項(xiàng)性質(zhì)和等差數(shù)列的通項(xiàng)公式和求和公式,解方程可得首項(xiàng)和公差,進(jìn)而得到所求通項(xiàng)公式;(2)由等差數(shù)列的求和公式,以及數(shù)列的裂項(xiàng)相消求和,可得SKIPIF1<0,再由作差比較法,即可得到結(jié)論.【詳解】(1)設(shè)正項(xiàng)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,4是SKIPIF1<0,SKIPIF1<0的等比中項(xiàng),且SKIPIF1<0,有SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0.6.(2022秋·北京·高三北京八十中校考期末)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和記為SKIPIF1<0.(1)寫出SKIPIF1<0的最大值和最小值;(2)若SKIPIF1<0,求SKIPIF1<0的值;(3)是否存在數(shù)列SKIPIF1<0,使得SKIPIF1<0?如果存在,寫出此時SKIPIF1<0的值;如果不存在,說明理由.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)0;(3)不存在,理由見解析.【分析】(1)根據(jù)遞推關(guān)系求SKIPIF1<0即可;(2)由(1)及遞推關(guān)系結(jié)合SKIPIF1<0求出SKIPIF1<0即可得解;(3)由遞推關(guān)系可得出項(xiàng)SKIPIF1<0與SKIPIF1<0的關(guān)系,據(jù)此可分析得解.【詳解】(1)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0最大值為SKIPIF1<0,最小值為SKIPIF1<0.(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,此時由SKIPIF1<0知SKIPIF1<0,SKIPIF1<0不滿足,舍去;當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0不滿足,舍去;當(dāng)SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0知SKIPIF1<0滿足題意,當(dāng)SKIPIF1<0時,不滿足題意,綜上,SKIPIF1<0或SKIPIF1<0,或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0.(3)由SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0為整數(shù),SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,若存在數(shù)列SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0為整數(shù),所以方程無解,故不存在數(shù)列SKIPIF1<0,使得SKIPIF1<0.7.(2022秋·河南·高三校聯(lián)考階段練習(xí))在正項(xiàng)數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)由SKIPIF1<0可得到SKIPIF1<0,根據(jù)累乘法求通項(xiàng)的方法,即可求出SKIPIF1<0的通項(xiàng)公式;(2)由SKIPIF1<0可知SKIPIF1<0,可判斷數(shù)列SKIPIF1<0為等比數(shù)列,根據(jù)等比數(shù)列的前n項(xiàng)和公式求出SKIPIF1<0,SKIPIF1<0即可求證.【詳解】(1)解:已知SKIPIF1<0①,則SKIPIF1<0,且SKIPIF1<0②,SKIPIF1<0,得SKIPIF1<0,整理得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,由累乘法可得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,符合上式,所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由(1)可知SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則數(shù)列SKIPIF1<0是首項(xiàng)為1,公比為SKIPIF1<0的等比數(shù)列,∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,得證.8.(2022秋·上海黃浦·高三校考階段練習(xí))已知數(shù)列SKIPIF1<0和SKIPIF1<0有SKIPIF1<0,SKIPIF1<0,而數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)證明數(shù)列SKIPIF1<0為等比數(shù)列,其中SKIPIF1<0;(3)如果SKIPIF1<0,試證明數(shù)列SKIPIF1<0的單調(diào)性.【答案】(1)SKIPIF1<0(2)證明見解析(3)證明見解析【分析】(1)根據(jù)數(shù)列的前SKIPIF1<0項(xiàng)和與通項(xiàng)的關(guān)系求解即可.(2)根據(jù)給定的遞推關(guān)系,結(jié)合等比數(shù)列定義計(jì)算判斷作答.(3)由(1)求出數(shù)列SKIPIF1<0的通項(xiàng),再求出SKIPIF1<0,并利用作差法比較SKIPIF1<0大小作答.【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0;(2)SKIPIF1<0SKIPIF1<0,而SKIPIF1<0,所以數(shù)列SKIPIF1<0為以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列;(3)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,數(shù)列SKIPIF1<0為遞減數(shù)列.9.(2022秋·廣西南寧·高三統(tǒng)考階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0是等比數(shù)列;(2)記SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,均有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的最小值.【答案】(1)證明見解析(2)SKIPIF1<0【分析】(1)構(gòu)造SKIPIF1<0證明即可;(2)由(1)可得SKIPIF1<0,再累加可得SKIPIF1<0,求出SKIPIF1<0代入SKIPIF1<0化簡可得SKIPIF1<0,進(jìn)而根據(jù)恒成立方法求解即可.【詳解】(1)證明:因?yàn)镾KIPIF1<0,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0是以3為首項(xiàng),3為公比的等比數(shù)列.(2)由(1),得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.經(jīng)檢驗(yàn)當(dāng)SKIPIF1<0時,SKIPIF1<0,亦滿足SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.因?yàn)槿我釹KIPIF1<0,均有SKIPIF1<0,所以SKIPIF1<0.易知SKIPIF1<0,所以SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的最小值為SKIPIF1<0.10.(2022·四川遂寧·四川省遂寧市第二中學(xué)校??家荒#┮阎獢?shù)列SKIPIF1<0?的前SKIPIF1<0?項(xiàng)和為SKIPIF1<0?,且SKIPIF1<0?,__________.請?jiān)赟KIPIF1<0?成等比數(shù)列;SKIPIF1<0?,這三個條件中任選一個補(bǔ)充在上面題干中,并解答下面問題.(1)求數(shù)列SKIPIF1<0?的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0?的前SKIPIF1<0?項(xiàng)和SKIPIF1<0?,求證:SKIPIF1<0?.【答案】(1)任選一條件,都有SKIPIF1<0?;(2)證明見解析【分析】(1)根據(jù)SKIPIF1<0得到數(shù)列SKIPIF1<0?是首項(xiàng)為SKIPIF1<0?,公差為1的等差數(shù)列,然后利用等差數(shù)列的通項(xiàng)公式或前SKIPIF1<0項(xiàng)和公式列方程求解即可;(2)利用錯位相減法得到SKIPIF1<0,即可得到SKIPIF1<0,然后根據(jù)SKIPIF1<0得到數(shù)列SKIPIF1<0是遞增數(shù)列,即可得到SKIPIF1<0.【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0?,即SKIPIF1<0?,所以數(shù)列SKIPIF1<0?是首項(xiàng)為SKIPIF1<0?,公差為1的等差數(shù)列,其公差SKIPIF1<0?.若選SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0?,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0?,所以SKIPIF1<0,即數(shù)列SKIPIF1<0?的通項(xiàng)公式為SKIPIF1<0;若選SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,得SKIPIF1<0?,則SKIPIF1<0,所以SKIPIF1<0?,所以SKIPIF1<0;若選SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0?,所以SKIPIF1<0?,所以SKIPIF1<0.(2)由題可知SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,兩式相減得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以數(shù)列SKIPIF1<0是遞增數(shù)列,SKIPIF1<0,故SKIPIF1<0.11.(2022秋·河南·高三信陽高中校聯(lián)考期末)已知各項(xiàng)均為正數(shù)的數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,且數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,求證:SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025試論保險人的合同解除權(quán)
- 2025薛窯中學(xué)鍋爐房(浴室)承包合同
- 商場衛(wèi)生間改造敲墻協(xié)議
- 藝術(shù)品交易公司購房合同樣本
- 道路照明臨時電力供應(yīng)合同
- 大學(xué)食堂勤雜工聘用合同
- 皮革制造晉升管理準(zhǔn)則
- 書法輔導(dǎo)班教師勞動合同
- 攝影棚拍攝技巧分享
- 環(huán)保設(shè)備房產(chǎn)交易合同樣板
- 小兒預(yù)防接種過敏性休克
- 組裝簡易太陽能小車
- 模切機(jī)安全操作管理制度
- 年產(chǎn)30萬噸高鈦渣生產(chǎn)線技改擴(kuò)建項(xiàng)目環(huán)評報(bào)告公示
- 07221美術(shù)設(shè)計(jì)與創(chuàng)意
- 基于海洋文化背景下校本化特色課程開發(fā)深化實(shí)踐研究資料
- 胸外科食管切除、食管-胃胸內(nèi)吻合術(shù)技術(shù)操作規(guī)范
- 心靈的幻象 課件-2023-2024學(xué)年高中美術(shù)湘美版(2019)美術(shù)鑒賞
- 藏式餐飲創(chuàng)業(yè)計(jì)劃書
- 建筑安裝工程有限公司關(guān)于加大市場開拓力度的激勵辦法
- 網(wǎng)絡(luò)安全技術(shù)及應(yīng)用 第5版 習(xí)題及答案 賈鐵軍 習(xí)題集 第1章
評論
0/150
提交評論