版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第一篇熱點(diǎn)、難點(diǎn)突破篇專題07導(dǎo)數(shù)與隱零點(diǎn)問(wèn)題(練)【對(duì)點(diǎn)演練】一、單選題1.(2022·重慶八中高三階段練習(xí))若函數(shù)SKIPIF1<0SKIPIF1<0有極值點(diǎn)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則關(guān)于x的方程SKIPIF1<0的不同實(shí)數(shù)根個(gè)數(shù)是(
)A.3 B.4 C.5 D.6【答案】A【分析】求導(dǎo)數(shù)SKIPIF1<0,由題意知SKIPIF1<0是方程SKIPIF1<0的兩根,從而關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)根,作出草圖,由圖像可得答案.【詳解】SKIPIF1<0SKIPIF1<0,對(duì)于SKIPIF1<0有SKIPIF1<0是方程SKIPIF1<0的兩根令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,不妨設(shè)SKIPIF1<0,利用SKIPIF1<0有兩根,所以,根據(jù)三次函數(shù)的性質(zhì),可以畫出SKIPIF1<0的圖像,如圖所示,又因?yàn)镾KIPIF1<0,所以由圖可知,SKIPIF1<0有1個(gè)解,SKIPIF1<0有2個(gè)解故選:A.2.(2022·江蘇南京·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0(SKIPIF1<0),且SKIPIF1<0在SKIPIF1<0有兩個(gè)零點(diǎn),則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)給定條件,利用零點(diǎn)的意義等價(jià)轉(zhuǎn)化,構(gòu)造函數(shù)SKIPIF1<0,再借助導(dǎo)數(shù)探討函數(shù)SKIPIF1<0在SKIPIF1<0有兩個(gè)零點(diǎn)作答.【詳解】SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,依題意,函數(shù)SKIPIF1<0在SKIPIF1<0有兩個(gè)零點(diǎn),顯然SKIPIF1<0,而SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則有SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增或單調(diào)遞減,即有函數(shù)SKIPIF1<0在SKIPIF1<0只有一個(gè)零點(diǎn)1,因此SKIPIF1<0,此時(shí)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,則SKIPIF1<0,要函數(shù)SKIPIF1<0在SKIPIF1<0有兩個(gè)零點(diǎn),當(dāng)且僅當(dāng)SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn),即有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍SKIPIF1<0.故選:C3.(2022·四川瀘州·一模(理))已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0恰好有三個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】將問(wèn)題轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0的圖象有三個(gè)交點(diǎn)的問(wèn)題,利用導(dǎo)數(shù)判斷SKIPIF1<0的單調(diào)性,數(shù)形結(jié)合,即可求得結(jié)果.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0不是方程SKIPIF1<0的根;當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0恰好有三個(gè)不等的實(shí)數(shù)根即SKIPIF1<0與SKIPIF1<0的圖象有SKIPIF1<0個(gè)交點(diǎn);又SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,在SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0;且SKIPIF1<0;又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0;故在同一坐標(biāo)系下,SKIPIF1<0的圖象如下所示:數(shù)形結(jié)合可得,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)滿足題意,故SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.二、多選題4.(2022·福建泉州·高三開(kāi)學(xué)考試)設(shè)函數(shù),則下列判斷正確的是()A.存在兩個(gè)極值點(diǎn)B.當(dāng)時(shí),存在兩個(gè)零點(diǎn)C.當(dāng)時(shí),存在一個(gè)零點(diǎn)D.若有兩個(gè)零點(diǎn),則【答案】BD【分析】利用導(dǎo)數(shù)與極值點(diǎn)的關(guān)系可判斷A,利用與圖像結(jié)合條件可判斷BC,根據(jù)零點(diǎn)的概念結(jié)合不等式的性質(zhì)可判斷D.【詳解】因?yàn)楹瘮?shù)的定義域?yàn)?,,設(shè),,且方程的兩根之積為,在上有一個(gè)正根,設(shè)為,在上,,函數(shù)單調(diào)遞增,在上,,函數(shù)單調(diào)遞減,所以存在一個(gè)極大值點(diǎn),A錯(cuò)誤;令,即,函數(shù)的零點(diǎn)即為與的交點(diǎn),如圖所示:函數(shù)圖像與軸的交點(diǎn)為,當(dāng)時(shí),與有兩個(gè)不同的交點(diǎn),即存在兩個(gè)零點(diǎn),B正確;當(dāng)時(shí),與有兩個(gè)不同的交點(diǎn),所以當(dāng)時(shí),存在一個(gè)零點(diǎn),此說(shuō)法不正確,C錯(cuò)誤;若有兩個(gè)零點(diǎn),假設(shè),則有即兩式相減得:,,則,,,所以,即,D正確.故選:BD.5.(2022·山東菏澤·高三期中)已知函數(shù),,設(shè)方程的3個(gè)實(shí)根分別為,,,且,則的值可能為(
).A. B. C. D.【答案】BC【分析】利用導(dǎo)數(shù)研究的單調(diào)性、極值及區(qū)間值域,由題設(shè)可知在上必有兩個(gè)不等的實(shí)根(假設(shè))且,結(jié)合的性質(zhì)有且,,進(jìn)而求目標(biāo)式的值,即可確定答案.【詳解】由題設(shè),的定義域?yàn)?,且,∴?dāng)時(shí),,即遞減;當(dāng)時(shí),,即遞增.∴,又在上逐漸變小時(shí)逐漸趨近于0,當(dāng)時(shí)且隨趨向于0,趨向無(wú)窮大.(如圖2)∴的圖象如圖1、圖2:圖1圖2∵的定義域?yàn)?,由可得:在上必有兩個(gè)不等的實(shí)根(假設(shè))且,∴令,要使的3個(gè)實(shí)根,則、,即,可得.∴由知:,,∴.故選:BC.【點(diǎn)睛】首先應(yīng)用導(dǎo)數(shù)研究的性質(zhì),根據(jù)有3個(gè)實(shí)根,則在上必有兩個(gè)不等的實(shí)根,結(jié)合的值域求m的范圍且、,即可求目標(biāo)式的范圍.三、填空題6.(2022·全國(guó)·高三階段練習(xí)(理))已知函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為_(kāi)___________.【答案】【分析】根據(jù)極值點(diǎn)的定義,求導(dǎo)求零點(diǎn),將問(wèn)題轉(zhuǎn)化為兩函數(shù)求交點(diǎn)問(wèn)題,可得答案.【詳解】解:因?yàn)楹瘮?shù)有兩個(gè)極值點(diǎn),所以方程有兩個(gè)不同的實(shí)數(shù)根,即有兩個(gè)不同的解.令,則函數(shù)的圖象與直線有兩個(gè)不同的交點(diǎn).因?yàn)椋?,得.所以?dāng)時(shí),,在上單調(diào)遞減;當(dāng)時(shí),,在上單調(diào)遞增.所以.所以當(dāng)時(shí),;當(dāng)時(shí),.所以函數(shù)的圖象與的圖象有兩個(gè)不同的交點(diǎn)的充要條件是:,即.故實(shí)數(shù)a的取值范圍為.故答案為:.7.(2023·廣東廣州·高三階段練習(xí))方程有唯一的實(shí)數(shù)解,實(shí)數(shù)的取值范圍為_(kāi)_________.【答案】【分析】根據(jù)給定條件,構(gòu)造函數(shù),利用導(dǎo)數(shù)探討函數(shù)單調(diào)性,結(jié)合零點(diǎn)存在性定理求解作答.【詳解】令函數(shù),依題意,函數(shù)有唯一零點(diǎn),求導(dǎo)得,當(dāng)時(shí),,無(wú)零點(diǎn),當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,,當(dāng)且時(shí),,則在上存在唯一零點(diǎn),因此,當(dāng)時(shí),當(dāng)時(shí),,當(dāng)時(shí),,函數(shù)在上遞減,在上遞增,,當(dāng)且僅當(dāng),即時(shí),在上存在唯一零點(diǎn),因此,所以實(shí)數(shù)的取值范圍為.故答案為:8.(2022·廣東·高三階段練習(xí))已知,函數(shù),若函數(shù)無(wú)零點(diǎn),則實(shí)數(shù)a的取值范圍是______.【答案】【分析】先將的解析式代入并求得的解析式,將無(wú)零點(diǎn)等價(jià)轉(zhuǎn)化為無(wú)零點(diǎn),再通過(guò)求導(dǎo)判斷的單調(diào)性和最值,將其等價(jià)轉(zhuǎn)化為,據(jù)此求得實(shí)數(shù)a的取值范圍.【詳解】∵,無(wú)零點(diǎn),即無(wú)實(shí)根.∴無(wú)實(shí)根.令,則,由,得;,得.∴在上單調(diào)遞增,在上單調(diào)遞減,∴.而時(shí),,時(shí),,∴若無(wú)零點(diǎn),需,即.又,∴.故答案為:.9.(2022·全國(guó)·模擬預(yù)測(cè))已知函數(shù)的圖象與函數(shù)的圖象有且僅有一個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍是______.【答案】【分析】令,由于有且僅有一個(gè)零點(diǎn),所以分,,討論的單調(diào)性即可.【詳解】由題知,構(gòu)造新函數(shù),等價(jià)轉(zhuǎn)化令,則,由題意知有且僅有一個(gè)零點(diǎn).,①當(dāng)時(shí),令,解得;令,解得.所以在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時(shí),取得極小值,且.又因?yàn)?,且?dāng)越小時(shí),越大,所以有兩個(gè)零點(diǎn).②當(dāng)時(shí),,令,解得,令,解得,所以在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時(shí),取得極小值,且,又因?yàn)?,且?dāng)時(shí),,所以只有一個(gè)零點(diǎn).③當(dāng)時(shí),由,得或,當(dāng)時(shí),,則、上,上,所以、上遞增,上遞減;故極大值為,極小值為;當(dāng)時(shí),,此時(shí),在R上,即遞增,故無(wú)極值;當(dāng)時(shí),,則、上,上,所以、上遞增,上遞減;故極大值為,極小值為;又,,當(dāng)趨于負(fù)無(wú)窮時(shí),接近負(fù)無(wú)窮,當(dāng)趨于正無(wú)窮時(shí),接近正無(wú)窮,綜上,只有一個(gè)零點(diǎn).綜上所述,,即實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由函數(shù)的零點(diǎn)、圖象的交點(diǎn)求參數(shù)的值(或取值范圍)問(wèn)題,往往需要對(duì)參數(shù)分類討論,如何劃分討論的區(qū)間是思維的難點(diǎn).由于這類問(wèn)題涉及函數(shù)的單調(diào)區(qū)間,因此分類的標(biāo)準(zhǔn)是使函數(shù)在指定的區(qū)間內(nèi)其導(dǎo)數(shù)的符號(hào)是確定的.四、解答題10.(2022·河南·高三階段練習(xí)(理))已知函數(shù)()(1)當(dāng)時(shí),有兩個(gè)實(shí)根,求取值范圍;(2)若方程有兩個(gè)實(shí)根,且,證明:【答案】(1)取值范圍是(2)證明見(jiàn)解析【分析】(1)利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此求得的取值范圍.(2)將方程有兩個(gè)實(shí)根轉(zhuǎn)化為有兩個(gè)不相等的零點(diǎn),由此列方程,將證明轉(zhuǎn)化為證明,解得或?qū)?shù)證得不等式成立.【詳解】(1)的定義域?yàn)?,,在上單調(diào)遞增,所以的取值范圍是.(2)的定義域?yàn)椋袃蓚€(gè)不相等的實(shí)數(shù)根,令,由(1)知在上遞增,則,則有兩個(gè)不相等的零點(diǎn),,,.要證,只需證,即證,即證,,故只需證,不妨設(shè),令,則只需證,只需證,令,,所以,即當(dāng)時(shí),成立.所以,即,所以.【點(diǎn)睛】利用導(dǎo)數(shù)證明不等式,主要的方法是通過(guò)已知條件,劃歸與轉(zhuǎn)化所要證明的不等式,然后通過(guò)構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)來(lái)求所構(gòu)造函數(shù)的取值范圍來(lái)證得不等式成立.【沖刺提升】一、單選題1.(2022·黑龍江·牡丹江市第三高級(jí)中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,下列說(shuō)法中錯(cuò)誤的是(
)A.函數(shù)SKIPIF1<0在原點(diǎn)SKIPIF1<0處的切線方程是SKIPIF1<0B.SKIPIF1<0是函數(shù)SKIPIF1<0的極大值點(diǎn)C.函數(shù)SKIPIF1<0在SKIPIF1<0上有3個(gè)極值點(diǎn)D.函數(shù)SKIPIF1<0在SKIPIF1<0上有3個(gè)零點(diǎn)【答案】C【分析】由導(dǎo)數(shù)的幾何意義求出切線方程判斷A,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,極值點(diǎn)判斷B,由SKIPIF1<0的性質(zhì)判斷其與函數(shù)SKIPIF1<0的圖象的交點(diǎn)個(gè)數(shù)判斷D.利用導(dǎo)數(shù)確定極值點(diǎn)個(gè)數(shù)判斷C.【詳解】SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以切線方程是SKIPIF1<0,即SKIPIF1<0,A正確;SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,因此SKIPIF1<0是極大值點(diǎn),B正確;顯然1是極小值點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0上遞增,在SKIPIF1<0和SKIPIF1<0上遞減,因此SKIPIF1<0與SKIPIF1<0的圖象有3個(gè)交點(diǎn),即SKIPIF1<0有3個(gè)零點(diǎn),D正確;設(shè)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0恒成立,所以SKIPIF1<0是增函數(shù),而SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,SKIPIF1<0,易知SKIPIF1<0,所以SKIPIF1<0存在兩個(gè)零點(diǎn),由SKIPIF1<0的單調(diào)性知這兩個(gè)零點(diǎn)就是SKIPIF1<0的兩個(gè)極值點(diǎn),C錯(cuò).故選:C.2.(2022·四川·達(dá)州外國(guó)語(yǔ)學(xué)校高三階段練習(xí)(理))若關(guān)于SKIPIF1<0的方程SKIPIF1<0有三個(gè)不等的實(shí)數(shù)解SKIPIF1<0,且SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0為自然對(duì)數(shù)的底數(shù),則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】令SKIPIF1<0,則有SKIPIF1<0,令函數(shù)SKIPIF1<0,畫出其圖象,結(jié)合圖象可得關(guān)于SKIPIF1<0的方程SKIPIF1<0一定有兩個(gè)實(shí)根SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,即可求解.【詳解】解:由關(guān)于的SKIPIF1<0方程SKIPIF1<0,令SKIPIF1<0,則有SKIPIF1<0,令函數(shù)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,其圖象如下:要使關(guān)于SKIPIF1<0的方程SKIPIF1<0有3個(gè)不相等的實(shí)數(shù)解SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,結(jié)合圖象可得關(guān)于SKIPIF1<0的方程SKIPIF1<0一定有兩個(gè)實(shí)根SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,可得SKIPIF1<0,故選:B.3.(2022·天津·南開(kāi)中學(xué)高三階段練習(xí))設(shè)函數(shù)SKIPIF1<0①若方程SKIPIF1<0有四個(gè)不同的實(shí)根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0②若方程SKIPIF1<0有四個(gè)不同的實(shí)根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0③若方程SKIPIF1<0有四個(gè)不同的實(shí)根,則SKIPIF1<0的取值范圍是SKIPIF1<0④方程SKIPIF1<0的不同實(shí)根的個(gè)數(shù)只能是1,2,3,6四個(gè)結(jié)論中,正確的結(jié)論個(gè)數(shù)為(
)A.1 B.2 C.3 D.4【答案】B【分析】作出SKIPIF1<0的圖像,利用函數(shù)與方程之間的關(guān)系,分析問(wèn)題,即可得出答案.【詳解】解:對(duì)于①:作出SKIPIF1<0的圖像如下:若方程SKIPIF1<0有四個(gè)不同的實(shí)根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩個(gè)不等的實(shí)數(shù)根,SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩個(gè)不等的實(shí)數(shù)根,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故①正確;對(duì)于②:由上可知,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故②錯(cuò)誤;對(duì)于③:方程SKIPIF1<0的實(shí)數(shù)根的個(gè)數(shù),即為函數(shù)SKIPIF1<0與SKIPIF1<0的交點(diǎn)個(gè)數(shù),因?yàn)镾KIPIF1<0恒過(guò)坐標(biāo)原點(diǎn),當(dāng)SKIPIF1<0時(shí),有3個(gè)交點(diǎn),當(dāng)SKIPIF1<0時(shí)最多2個(gè)交點(diǎn),所以SKIPIF1<0,當(dāng)SKIPIF1<0與SKIPIF1<0相切時(shí),設(shè)切點(diǎn)為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0與SKIPIF1<0相切時(shí),即SKIPIF1<0時(shí),此時(shí)有4個(gè)交點(diǎn),若SKIPIF1<0有4個(gè)實(shí)數(shù)根,即有4個(gè)交點(diǎn),當(dāng)SKIPIF1<0時(shí)由圖可知只有3個(gè)交點(diǎn),當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0單調(diào)遞減,所以當(dāng)SKIPIF1<0時(shí),函數(shù)取得極大值即最大值,SKIPIF1<0,又SKIPIF1<0及對(duì)數(shù)函數(shù)與一次函數(shù)的增長(zhǎng)趨勢(shì)可知,當(dāng)SKIPIF1<0無(wú)限大時(shí)SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0和SKIPIF1<0內(nèi)各有一個(gè)零點(diǎn),即SKIPIF1<0有5個(gè)實(shí)數(shù)根,故③錯(cuò)誤;對(duì)于④:SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,由圖可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的交點(diǎn)個(gè)數(shù)為2,當(dāng)SKIPIF1<0,0時(shí),SKIPIF1<0的交點(diǎn)個(gè)數(shù)為3,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的交點(diǎn)個(gè)數(shù)為4,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的交點(diǎn)個(gè)數(shù)為1,所以若SKIPIF1<0時(shí),則SKIPIF1<0,交點(diǎn)的個(gè)數(shù)為SKIPIF1<0個(gè),若SKIPIF1<0時(shí),則SKIPIF1<0,交點(diǎn)的個(gè)數(shù)為3個(gè),若SKIPIF1<0,則SKIPIF1<0,交點(diǎn)有SKIPIF1<0個(gè),若SKIPIF1<0且SKIPIF1<0時(shí),則SKIPIF1<0且SKIPIF1<0,交點(diǎn)有SKIPIF1<0個(gè),若SKIPIF1<0,交點(diǎn)有1個(gè),綜上所述,交點(diǎn)可能有1,2,3,6個(gè),即方程不同實(shí)數(shù)根1,2,3,6,故④正確;故選:B.二、多選題4.(2022·河北·邢臺(tái)一中高一階段練習(xí))已知SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,則(
)A.若SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0【答案】ABD【分析】作出函數(shù)SKIPIF1<0的圖像,當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,可推得SKIPIF1<0即SKIPIF1<0,判斷A,結(jié)合基本不等式可判斷B;取特殊值,舉反例SKIPIF1<0,可判斷C;由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0為SKIPIF1<0的兩個(gè)解,說(shuō)明SKIPIF1<0,即SKIPIF1<0,可判斷D.【詳解】作出函數(shù)SKIPIF1<0的圖像如圖示:由于SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0不能同時(shí)為0,當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,A正確;由SKIPIF1<0可得SKIPIF1<0(SKIPIF1<0,取不到等號(hào)),即SKIPIF1<0,B正確;取SKIPIF1<0,則SKIPIF1<0,即,符合題意,故C錯(cuò)誤;若,,則,由,可得,說(shuō)明為的兩個(gè)解,設(shè),則,又單調(diào)遞增,當(dāng)時(shí),,遞增,故,即此時(shí),當(dāng)時(shí),由,可得,由于,故,由于遞增,即存在唯一的,使得,當(dāng)時(shí),,遞減,當(dāng)時(shí),,遞增,故,而,故此時(shí),綜合上述,說(shuō)明的零點(diǎn)僅有0和1,即,即,則,故D正確,故選:.5.(2022·海南昌茂花園學(xué)校高三階段練習(xí))已知函數(shù),其中,均為實(shí)數(shù),則下列說(shuō)法錯(cuò)誤的是(
)A.若,則為奇函數(shù)B.若,則為奇函數(shù)C.若,則方程有一個(gè)實(shí)數(shù)根D.若,則方程(為實(shí)數(shù))可能有兩個(gè)不同的實(shí)數(shù)根【答案】ABC【分析】根據(jù)函數(shù)的結(jié)構(gòu)特點(diǎn),可利用特殊值檢驗(yàn)法推出選項(xiàng)A、B不正確,根據(jù)時(shí)的表達(dá)式得出的解析式,然后利用導(dǎo)數(shù)研究出函數(shù)的單調(diào)性,求得極值,畫出圖像,利用數(shù)形結(jié)合可得C、D的正誤.【詳解】對(duì)于A,時(shí),若,則,此時(shí),即函數(shù)的圖象可由函數(shù)的圖象先向右平移個(gè)單位長(zhǎng)度,再向上平移個(gè)單位長(zhǎng)度得到,易知函數(shù)為奇函數(shù),故函數(shù)的圖象不關(guān)于原點(diǎn)對(duì)稱,所以A不正確;對(duì)于B,,時(shí),滿足,此時(shí),的圖象不關(guān)于原點(diǎn)對(duì)稱,所以B不正確;若,則,,求導(dǎo)可得,易知,,當(dāng)時(shí),,當(dāng)時(shí),,故函數(shù)在,上單調(diào)遞增,在,上單調(diào)遞減,所以在處取得極大值,為,在處取得極小值,為.如下圖,結(jié)合圖象對(duì)于C,方程有一個(gè)實(shí)數(shù)根,等價(jià)于函數(shù)與函數(shù)有一個(gè)交點(diǎn),由圖可得C不正確,對(duì)于D,方程可能有兩個(gè)不同的實(shí)數(shù)根,等價(jià)于函數(shù)與函數(shù)有兩個(gè)交點(diǎn),由圖可得當(dāng)時(shí),方程可能有兩個(gè)不同的實(shí)數(shù)根,所以D正確.故選:ABC.6.(2022·全國(guó)·模擬預(yù)測(cè))已知方程有兩個(gè)不同的根,,則下列結(jié)論一定正確的是(
)A. B.C. D.【答案】AC【分析】首先等式變形,并構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,以及結(jié)合零點(diǎn)存在性定理,求的取值范圍,判斷AB;首先構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,并假設(shè),利用函數(shù)的單調(diào)性,比較自變量的大小,即可判斷C;變形不等式得到,再結(jié)合C的判斷,即可判斷D.【詳解】A,B選項(xiàng):方程等價(jià)于方程,構(gòu)造函數(shù),則,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,則,因此只需滿足,即.當(dāng)時(shí),,,由以上可知,當(dāng)時(shí),分別在,上各有一個(gè)零點(diǎn),(零點(diǎn)存在定理的應(yīng)用)則方程有兩個(gè)不同的根,,因此選項(xiàng)A正確,選項(xiàng)B錯(cuò)誤;C選項(xiàng):構(gòu)造函數(shù),則,因此在上單調(diào)遞減,易知,假設(shè),則,即成立,又,則,因此,即,因此選項(xiàng)C正確;D選項(xiàng):由即,得,不一定成立,故選項(xiàng)D錯(cuò)誤.故選:AC7.(2022·山東·濟(jì)南三中高一階段練習(xí))已知函數(shù)的零點(diǎn)為,函數(shù)的零點(diǎn)為,則(
)A. B. C. D.【答案】ACD【分析】注意到,又可得在單調(diào)遞增,則有,后由零點(diǎn)存在性定理可得范圍.,之后判斷各選項(xiàng)正誤即可得答案..【詳解】,又函數(shù)的零點(diǎn)為,則,其中.,得在上單調(diào)遞增,又其有零點(diǎn),則為其唯一零點(diǎn).又,得.注意到,,則,且.對(duì)于A,因,,則,故A正確.對(duì)于B,因,則.令.在上單調(diào)遞減,則,得在上單調(diào)遞增.則,即,故B錯(cuò)誤.對(duì)于C選項(xiàng),因,,則,故.則由基本不等式結(jié)合有:,故C正確.對(duì)于D選項(xiàng),因,則,由C選項(xiàng)分析可知.則令,.得在上單調(diào)遞增,故,即.故D正確.故選:ACD【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題涉及函數(shù)零點(diǎn),構(gòu)造函數(shù)證明不等式,需注意以下兩點(diǎn):(1)若題目中同時(shí)出現(xiàn)與,常通過(guò)使出現(xiàn)相同結(jié)構(gòu).(2)對(duì)于雙變量問(wèn)題,常利用消元思想轉(zhuǎn)化為關(guān)于一個(gè)未知數(shù)的問(wèn)題.三、填空題8.(2022·江蘇省江浦高級(jí)中學(xué)高三階段練習(xí))已知函數(shù)在上有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)_____.【答案】【分析】先利用同構(gòu)得到,換元后得到,參變分離得到有兩個(gè)不同的根,構(gòu)造,求導(dǎo)得到其單調(diào)性,極值和最值情況,得到函數(shù)圖象,數(shù)形結(jié)合得到,解出答案即可.【詳解】由題意得有兩個(gè)不同的根,即有兩個(gè)不同的根,變形為,即,令,則,其中令,,恒成立,故在單調(diào)遞增,得到,故有兩個(gè)不同的根,令,則,,當(dāng)時(shí),,當(dāng)時(shí),,故在處取得極大值,也是最大值,,且當(dāng)時(shí),,當(dāng)時(shí),,畫出的圖象如下圖:故時(shí),有兩個(gè)不同的根,解得:.故答案為:.【點(diǎn)睛】導(dǎo)函數(shù)求解參數(shù)取值范圍,當(dāng)函數(shù)中同時(shí)出現(xiàn)與,通常使用同構(gòu)來(lái)進(jìn)行求解,本題難點(diǎn)是變形得到,即從而構(gòu)造進(jìn)行求解.四、解答題9.(2019·天津·高考真題(文))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0.(Ⅰ)若SKIPIF1<0,討論SKIPIF1<0的單調(diào)性;(Ⅱ)若SKIPIF1<0,(i)證明SKIPIF1<0恰有兩個(gè)零點(diǎn)(ii)設(shè)SKIPIF1<0為SKIPIF1<0的極值點(diǎn),SKIPIF1<0為SKIPIF1<0的零點(diǎn),且SKIPIF1<0,證明SKIPIF1<0.【答案】(I)SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增.;(II)(i)見(jiàn)解析;(ii)見(jiàn)解析.【分析】(I);首先寫出函數(shù)的定義域,對(duì)函數(shù)求導(dǎo),判斷導(dǎo)數(shù)在對(duì)應(yīng)區(qū)間上的符號(hào),從而得到結(jié)果;(II)(i)對(duì)函數(shù)求導(dǎo),確定函數(shù)的單調(diào)性,求得極值的符號(hào),從而確定出函數(shù)的零點(diǎn)個(gè)數(shù),得到結(jié)果;(ii)首先根據(jù)題意,列出方程組,借助于中介函數(shù),證得結(jié)果.【詳解】(I)解:由已知,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,因此當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增.(II)證明:(i)由(I)知,SKIPIF1<0,令SKIPIF1<0,由SKIPIF1<0,可知SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減,又SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0內(nèi)有唯一解,從而SKIPIF1<0在SKIPIF1<0內(nèi)有唯一解,不妨設(shè)為SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減,因此SKIPIF1<0是SKIPIF1<0的唯一極值點(diǎn).令SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減,從而當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0在SKIPIF1<0內(nèi)有唯一零點(diǎn),又SKIPIF1<0在SKIPIF1<0內(nèi)有唯一零點(diǎn)1,從而,SKIPIF1<0在SKIPIF1<0內(nèi)恰
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024音樂(lè)教師工作總結(jié)范文(31篇)
- 提升學(xué)科服務(wù)地方能力的策略及實(shí)施路徑
- 2024年花卉托管協(xié)議
- 2024年度中外農(nóng)產(chǎn)品進(jìn)出口貿(mào)易合同3篇
- 2024建筑安裝工程勞務(wù)分包合同模板
- 2024年版汽車金融借款合同模板一
- 2024校醫(yī)校園心理危機(jī)干預(yù)與心理咨詢服務(wù)合同3篇
- 2024年起重機(jī)維修保養(yǎng)與購(gòu)銷一體化合同范本3篇
- 2024房屋買賣詳細(xì)協(xié)議條款匯編版B版
- 2024年版人工智能語(yǔ)音助手授權(quán)使用協(xié)議
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
- 急癥識(shí)別及處理課件
- 人防工程質(zhì)量監(jiān)督(共38)
- 《認(rèn)識(shí)長(zhǎng)方形》數(shù)學(xué)
- 關(guān)注體重 控制血壓課件
- 統(tǒng)編版六年級(jí)語(yǔ)文上冊(cè)廣東省廣州市花都區(qū)期末檢測(cè)試卷附答案
- 2022更新國(guó)家開(kāi)放大學(xué)電大《生產(chǎn)與運(yùn)作管理》2025-2026期末試題及答案(試卷代號(hào):2617)
- (完整版)保溫工藝課件
- 設(shè)計(jì)驗(yàn)證和生產(chǎn)確認(rèn)[福特FORD]
- 工作場(chǎng)所空氣中有害物質(zhì)監(jiān)測(cè)的采樣規(guī)范課件159-2004
- 合同范本之采購(gòu)合同誰(shuí)保管
評(píng)論
0/150
提交評(píng)論