紹興文理學院元培學院《圖形與時尚產品應用》2023-2024學年第一學期期末試卷_第1頁
紹興文理學院元培學院《圖形與時尚產品應用》2023-2024學年第一學期期末試卷_第2頁
紹興文理學院元培學院《圖形與時尚產品應用》2023-2024學年第一學期期末試卷_第3頁
紹興文理學院元培學院《圖形與時尚產品應用》2023-2024學年第一學期期末試卷_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁紹興文理學院元培學院

《圖形與時尚產品應用》2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺中,以下哪種方法常用于圖像的語義分割中的多尺度特征融合?()A.特征金字塔B.空洞卷積C.注意力機制D.以上都是2、計算機視覺中的圖像修復是填補圖像中的缺失或損壞部分。假設我們有一張老照片,其中部分區(qū)域被損壞,需要進行修復。以下哪種圖像修復方法能夠生成自然、合理的內容,與周圍區(qū)域融合良好?()A.基于紋理合成的修復方法B.基于插值和填充的修復方法C.基于深度學習的圖像修復網絡,如ContextEncoderD.基于圖像分解和重構的修復方法3、在計算機視覺的自動駕駛應用中,車輛需要準確識別道路標志、交通信號燈和其他車輛的狀態(tài)。對于實時性和準確性要求極高的場景,以下哪種傳感器融合技術能夠為車輛提供更全面和可靠的環(huán)境感知?()A.攝像頭與激光雷達的融合B.毫米波雷達與超聲波傳感器的融合C.多種攝像頭的融合D.以上都是4、在計算機視覺的動作識別任務中,識別視頻中的人物動作。假設要識別一段舞蹈視頻中的動作,以下關于動作識別方法的描述,哪一項是不正確的?()A.可以提取視頻中的時空特征,如光流和運動軌跡,來描述動作B.基于深度學習的方法,如3D卷積神經網絡,能夠直接處理視頻數(shù)據(jù),進行動作識別C.動作識別需要考慮動作的速度、幅度和節(jié)奏等特征D.動作識別只適用于簡單的、規(guī)范化的動作,對于復雜的、個性化的動作無法準確識別5、計算機視覺中的動作識別是一個具有挑戰(zhàn)性的任務。假設要識別一段體育比賽視頻中的運動員動作,以下關于特征選擇的方法,哪一項是不太可行的?()A.提取運動員的身體輪廓和關節(jié)位置作為特征B.僅使用視頻的音頻信息來判斷運動員的動作C.計算視頻幀之間的光流變化作為動作特征D.結合空間和時間維度的特征來描述動作6、在計算機視覺的目標計數(shù)任務中,統(tǒng)計圖像或視頻中目標的數(shù)量。假設要統(tǒng)計一個果園中蘋果的數(shù)量,以下關于目標計數(shù)方法的描述,哪一項是不正確的?()A.可以基于圖像分割和對象識別的方法,先分割出每個蘋果,然后進行計數(shù)B.利用深度學習中的回歸模型直接預測蘋果的數(shù)量C.目標計數(shù)不受蘋果的大小、形狀和分布的影響,任何情況下都能準確計數(shù)D.結合多視角圖像或視頻序列可以提高目標計數(shù)的準確性7、在計算機視覺的圖像分割任務中,假設要對細胞圖像進行精細分割。以下關于模型選擇的考慮因素,哪一項是不準確的?()A.模型對細胞邊界的捕捉能力B.模型在小樣本數(shù)據(jù)上的泛化能力C.模型的訓練時間和計算資源需求D.模型的知名度和在學術圈的引用次數(shù)8、計算機視覺中的圖像去霧是一個具有挑戰(zhàn)性的問題。假設要去除一張有濃霧的風景圖像中的霧氣,以下哪種方法可能需要對大氣散射模型有深入的了解?()A.基于深度學習的去霧方法B.基于物理模型的去霧方法C.基于圖像增強的去霧方法D.基于濾波的去霧方法9、計算機視覺中的視頻理解不僅包括對單個幀的分析,還需要考慮幀之間的關系。假設我們要理解一個電影片段的情節(jié)和情感,以下哪種方法能夠有效地捕捉視頻中的時空動態(tài)信息和語義信息?()A.基于幀級特征和分類器的方法B.基于深度學習的視頻理解模型,結合注意力機制C.基于光流和運動軌跡的方法D.基于音頻和視頻融合的方法10、在計算機視覺的發(fā)展中,模型的可解釋性是一個重要的研究方向。以下關于模型可解釋性的描述,不準確的是()A.模型可解釋性旨在理解模型是如何做出決策和生成輸出的B.可解釋性對于建立用戶對模型的信任和確保模型的公正性具有重要意義C.一些可視化技術,如特征圖可視化和類激活映射,可以幫助解釋模型的決策過程D.目前的計算機視覺模型都具有良好的可解釋性,能夠清晰地解釋其決策依據(jù)11、假設要開發(fā)一個能夠自動識別水果種類和品質的計算機視覺系統(tǒng),用于水果分揀和質量評估。在獲取水果圖像時,可能會受到光照、角度和遮擋等因素的影響。為了提高識別的準確性和魯棒性,以下哪種圖像預處理技術可能是關鍵?()A.圖像增強B.圖像去噪C.圖像歸一化D.圖像分割12、計算機視覺中的語義理解旨在理解圖像或視頻中的高層語義信息。以下關于語義理解的說法,不正確的是()A.語義理解需要將圖像中的物體、場景和事件等與先驗知識進行關聯(lián)和解釋B.知識圖譜可以為語義理解提供豐富的語義信息和關系C.語義理解在圖像描述生成、問答系統(tǒng)等任務中發(fā)揮著重要作用D.語義理解已經達到了非常完美的程度,能夠準確理解任何復雜的圖像或視頻內容13、當利用計算機視覺進行圖像語義分割任務,例如將圖像中的不同物體分割出來,以下哪種深度學習架構可能在分割精度和效率方面表現(xiàn)較好?()A.FCNB.U-NetC.SegNetD.以上都是14、在一個基于計算機視覺的農業(yè)監(jiān)測系統(tǒng)中,需要對農作物的生長狀況進行評估,例如判斷葉片的顏色、形狀和病蟲害情況。以下哪種圖像分析方法可能對農作物監(jiān)測較為有效?()A.顏色空間轉換B.形態(tài)學分析C.紋理分析D.以上都是15、在計算機視覺的圖像配準任務中,假設要將兩張拍攝角度不同的同一物體的圖像進行對齊。以下關于特征匹配的方法,哪一項是不太可靠的?()A.使用SIFT(Scale-InvariantFeatureTransform)特征進行匹配B.基于像素值的直接比較進行匹配C.利用SURF(SpeededUpRobustFeatures)特征進行匹配D.通過ORB(OrientedFASTandRotatedBRIEF)特征進行匹配16、計算機視覺中的視頻理解任務包括對視頻內容的分析和解釋。假設要理解一段新聞視頻的主要內容和事件發(fā)展。以下關于視頻理解的描述,哪一項是不正確的?()A.可以通過對視頻中的幀進行分類、目標檢測和跟蹤來實現(xiàn)視頻理解B.深度學習中的注意力機制可以幫助聚焦視頻中的關鍵信息,提高理解的準確性C.視頻理解只需要關注視覺信息,不需要考慮音頻和文字等其他模態(tài)的信息D.可以結合知識圖譜和語義理解技術,對視頻中的內容進行更深入的分析和解釋17、計算機視覺中的動作識別旨在識別視頻中的人體動作。假設要對一段監(jiān)控視頻中的人員動作進行分類,以下關于動作識別方法的描述,正確的是:()A.基于手工特征和傳統(tǒng)分類器的方法能夠處理復雜的動作變化,準確率高B.深度學習中的循環(huán)神經網絡(RNN)在動作識別中無法捕捉動作的時空特征C.3D卷積神經網絡能夠同時處理空間和時間維度的信息,適用于動作識別任務D.動作識別系統(tǒng)對視頻的拍攝角度和背景變化不敏感,具有很強的通用性18、在計算機視覺中,以下哪種技術常用于圖像的超分辨率重建的上采樣方法?()A.反卷積B.亞像素卷積C.最近鄰插值D.以上都是19、圖像分類是計算機視覺的基礎任務之一。假設要對一組動物圖片進行分類,區(qū)分貓、狗、兔子等。以下關于圖像分類方法的描述,哪一項是不準確的?()A.傳統(tǒng)的機器學習方法,如支持向量機(SVM),也可以用于圖像分類任務B.深度學習中的卷積神經網絡(CNN)在圖像分類中取得了顯著的效果C.圖像分類只需要考慮圖像的內容,不需要考慮圖像的拍攝角度和背景等因素D.可以通過數(shù)據(jù)增強技術,如旋轉、裁剪、翻轉等,增加訓練數(shù)據(jù)的多樣性20、在圖像去噪中,BM3D(Block-Matchingand3DFiltering)算法的優(yōu)勢在于()A.去噪效果好B.保持圖像細節(jié)C.計算效率高D.以上都是21、在計算機視覺的場景理解任務中,需要對圖像中的物體、關系和上下文進行綜合分析。假設要理解一個室內場景的布局和功能,以下哪種信息可能是最關鍵的?()A.物體的形狀和顏色B.物體之間的空間位置關系C.圖像的亮度和對比度D.圖像的拍攝角度22、計算機視覺在工業(yè)檢測中的應用可以提高產品質量和生產效率。假設一個工廠需要檢測生產線上的零件是否存在缺陷。以下關于工業(yè)檢測中的計算機視覺的描述,哪一項是不準確的?()A.能夠快速準確地檢測出零件的表面缺陷、尺寸偏差等問題B.可以通過機器視覺系統(tǒng)對零件進行自動分類和篩選C.工業(yè)檢測中的計算機視覺系統(tǒng)需要高度的穩(wěn)定性和可靠性,對環(huán)境變化不敏感D.計算機視覺在工業(yè)檢測中的應用已經非常成熟,不需要人工干預和校驗23、計算機視覺在醫(yī)學圖像分析中有著重要作用。假設要通過眼底圖像檢測糖尿病性視網膜病變,以下關于模型訓練中數(shù)據(jù)標注的難度,哪一項是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標注B.眼底圖像的質量參差不齊,影響標注準確性C.標注人員的醫(yī)學知識不足,導致標注錯誤D.數(shù)據(jù)量過大,標注工作耗時費力24、在計算機視覺的圖像配準任務中,假設要將兩張拍攝角度和時間不同的同一物體的圖像進行精確對齊。這兩張圖像可能存在縮放、旋轉和平移等差異。以下哪種配準方法可能更適合處理這種情況?()A.基于特征點匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進行任何配準操作C.基于圖像灰度值的配準方法,計算灰度差異D.隨機選擇圖像中的點進行匹配25、計算機視覺中的視頻目標跟蹤中,假設目標在跟蹤過程中發(fā)生了嚴重的形變。以下關于處理目標形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應地處理目標形變,保持跟蹤的準確性B.特征點跟蹤方法對目標形變不敏感,在這種情況下仍然能夠可靠跟蹤C.深度學習中的孿生網絡在目標形變時容易丟失目標,無法繼續(xù)跟蹤D.結合多種特征和模型更新策略可以提高對目標形變的跟蹤魯棒性二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺在溫室環(huán)境監(jiān)測中的作用。2、(本題5分)簡述圖像的傅里葉變換的用途。3、(本題5分)描述計算機視覺在氣象災害預警中的應用。4、(本題5分)簡述圖像的色彩空間選擇原則。三、分析題(本大題共5個小題,共25分)1、(本題5分)解析某科技公司的產品說明書設計,探討其在信息傳達、排版設計、用戶友好性方面的表現(xiàn),以及如何更好地幫助用戶了解產品。2、(本題5分)觀察某汽車品牌的車展展示設計,思考其如何通過空間布局、燈光效果和車輛展示方式突出品牌特色和車型優(yōu)勢。3、(本題5分)分析某博物館的展覽展示設計,探討如何通過空間布局、燈光效果、展品陳列和說明標識,引導觀眾參觀,傳遞知識和文化內涵。4、(本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論