版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1
ShapingAI'sImpactonBillionsofLives
Mariano-FlorentinoCuéllar
,
JeffDean
,
FinaleDoshi-Velez
,
JohnHennessy
,
AndyKonwinski
,
SanmiKoyejo
,
PelonomiMoiloa
,
EmmaPierson
,and
DavidPatterson
Introduction1
I.PuttingPragmaticAIinContext3
HistoryofTechnologicalParadigmShifts3
ArtificialIntelligence(AI)5
ArtificialGeneralIntelligence(AGI)6
II.DemystifyingthePotentialImpactofAI7
Employment7
Education9
Healthcare12
Information/News/SocialNetworking14
Media/Entertainment16
Governance/NationalSecurity/OpenSource18
Science21
III.HarnessingAIforthePublicGood23
Milestones,Prizes,andResearchCenters23
Conclusion24
Acknowledgements25
AppendixI:EnergyUsageofAI26
AppendixII:TheRapidUpskillingPrize27
Bibliography27
Authors30
Introduction
Arti?cialIntelligence(AI),likeanytransformative
technology,hasthepotentialtobeadouble-edged
sword,leadingeithertowardsigni?cant
advancementsordetrimentaloutcomesforsocietyasawhole.Asisoftenthecasewhenitcomesto
widely-usedtechnologiesinmarketeconomies(e.g.,carsandsemiconductorchips),commercialinteresttendstobethepredominantguidingfactor.TheAI
communityisatriskofbecomingpolarizedtoeithertakealaissez-faireattitudetowardAIdevelopment,ortocallforgovernmentoverregulation.BetweenthesetwopolesweargueforthecommunityofAI
practitionerstoconsciouslyandproactivelyworkfor
thecommongood.Thispapero?ersablueprintforanewtypeofinnovationinfrastructureincluding18
concretemilestonestoguideAIresearchinthat
direction.OurviewisthatwearestillintheearlydaysofpracticalAI,andfocusede?ortsbypractitioners,
policymakers,andotherstakeholderscanstillmaxi-mizetheupsidesofAIandminimizeitsdownsides.
Too?erasu?ciently-broadandrealistic
perspectivethatcapturesthepossibilities,we’ve
assembledateamcomposedofseniorcomputer
scientists,policymakers,andrisingstarsinAIfrom
academia,startups,andbigtech—ateamthatcoversmanyAIdomains(seeAuthors).
Inadditiontoourownexpertise,ourperspectiveisinformedbyinterviewswithtwodozenexpertsin
2
various?elds.WetalkedtoluminariessuchasrecentNobelist
JohnJumper
onscience,President
Barack
Obama
ongovernance,formerUNAmbassadorandformerNationalSecurityAdvisor
SusanRice
on
security,philanthropist
EricSchmidt
onseveraltopics,andscience?ctionnovelist
NealStephenson
on
entertainment.Wealsometwithexpertsinlabor
economics,education,healthcare,andinformation.Thisongoingdialogueandcollaborativee?orthas
producedacomprehensive,realisticviewofwhattheactualimpactofAIcouldbe,fromadiverseassembly
ofthinkerswithdeepunderstandingofthistechnologyandthesedomains.
Ourviewisthatwearestillinthe
earlydaysofpracticalAI,andthat
focusedefortsbypractitioners,
policymakers,andotherstakeholders
canstillmaximizetheupsidesofAI
andminimizeitsdownsides.
ThesediscussionshavecrystallizedourconvictionthatrecentAImodelshaveshownaremarkable
promisetoin?uencetheworld,potentiallya?ectingbillionsoflivesforbetterorworse.WethinkthebestbetgoingforwardistoassumeAIprogresswill
continueorspeedup,andnotslowdown.AI'simpactonsocietywillbeprofound.
Fromtheseexchanges,?verecurringguidelines
emerged,whichformthecornerstoneofaframeworkforbeginningtoharnessAIinserviceofthepublic
good.Theynotonlyguideoure?ortsindiscoverybutalsoshapeourapproachtodeployingthis
transformativetechnologyresponsiblyandethically.
1.HumansandAIsystemsworkingasateam
candomorethaneitherontheirown.ApplicationsofAIfocusedonhumanproductivityproducelarger
productivityincreasesthanthosefocusedon
replacinghumanlabor[Brynjolfsson][National
Academies].Inadditiontoincreasingpeople’s
employability,toolsaimedatmakingpeoplemore
productiveletthemactassafeguardsifAIsystems
veero?course.AIattimescanleveltheplaying?eldbetweenthosewhohavemanyresourcesandthoseoflimitedresources.SincepeopleandAIsystems
tendtomakedi?erentmistakes,collaboratingwithAImayimproveresults.Inshort,focusingonhuman
productivityhelpsbothpeopleandAItoolssucceed.Policiesshouldaimtowardinnovationsthatencour-agehuman-AIcollaborationwhilereducingrisks.
2.Toincreaseemployment,aimfor
productivityimprovementsin?eldsthatwould
createmorejobs.Despitetremendousproductivitygainsincomputingandairlinetravel,theUnited
Statesin2020had11timesmoreprogrammersand8timesmorecommercialairlinepilotsthanin1970.
Thisgrowthisbecauseprogrammingandairline
transportationwere?eldswithwhatlaboreconomistscallanelasticdemand.Goodswithelasticdemandarethosewhereadecreaseinpriceresultsinalarge
increaseinthequantityacquired.Agriculture,ontheotherhand,isinelasticintheU.S.,soproductivity
gainshavereducedthenumberofagriculturejobsfourfoldinonehumanlifetime(1940to2020).
Discussionswithexpertsinother?eldswilllikely
uncovermoreopportunitiesforAItoincrease
productivity.IfpolicymakersandpractitionersaimAIsystemsatimprovingproductivityinelastic?elds,AIcanincreaseemployment,despitepublicfearstothecontrary.AndasrecentNobelistJohnJumper
observed,onewaytoacceleratescienti?cprogressistoimprovetheproductivityofscientists,whichisthegoalofa“scientist’saide”(see
Science
).ProductivitygainsinsciencefromAIcouldprovetobeextremelyvaluabletosociety[NationalAcademies].
3.AIsystemsshouldinitiallyaimatremovingthedrudgeryofcurrenttasks.Ifpolicymakersandpractitioners?rsttargetAIsystemsthatautomate
menialandunful?llingaspectsofcurrentjobs,they
canmakeworkmoremeaningfulandenjoyable.
Doctorsandnurseschoosetheircareersbecause
theywanttohelppatients,nottodoendless
insurancedocumentation.Schoolteachersmayprefertospendtheirtimeonstudentinteractionratherthan
gradingandrecordkeeping.Ratherthanskipaheadto
3
newAIinnovations,?rstprovideAItoolstoimprovethemeaningfulnessofpeople’scurrentworkin
hospitalsandclassrooms.Forexample,AI-powered“teacher’saide”tools(see
Education
)couldautomatetasksteachers?ndunful?lling,freeinguptimeto
spendwithstudentsandmakingteachingworkloadsmoremanageable.Asecondarybene?tisthattheymightbemorelikelytouseAItoolsinthefuture.
Sisyphus’sdrudgery.HecouldhaveusedAI’shelp.
4.TheimpactofAIvariesbygeography.
PhilanthropistEricSchmidtemphasizedthatwhile
nationswithadvancedeconomiesworryaboutAI
displacinghighlytrainedprofessionals,countrieswith
leaneconomiesfaceshortagesofthesesameskilledexperts(see
Employment
).AIcouldmakesuch
expertisemorewidelyavailableinplaceswith
extremescarcityoftrainedworkersandwithinsuf-?cientfunding,
potentiallyenhancingqualityoflife
andeconomicgrowth
.AIsystemscouldbecomeastransformativeforthelow-andmiddle-income
nationsas
mobilephoneshavebeen
[Rotondi].Forexample,a“healthcareaide”thatimprovedtheskillsetsandproductivityofnursesandphysician
assistantscouldalsogivemorepatientsaccessto
qualityhealthcareinregionsfacingphysician
shortages(see
Healthcare
).MultilingualAImodelsonsmartphonescangreatlyhelppeopleinlow-and
middle-incomecountriesgainaccesstoinformation,education,media/entertainment,andmore.Better
economiesandservicesmayeveno?er
alternatives
toemigrationforsomeinmiddle-incomecountries
.
5.DeterminethebestmetricsandmethodstoevaluateAIinnovations.WemustmeasureAI
accuratelytoevaluateitsrealpotential.Inhigh-stakesdomains,becausewecan'triskharmingparticipants,
weneedtousegoldstandardtoolstoevaluate
innovationaccuratelyandidentifypossiblelimitationsbeforewidedeployment:
A/Btesting
,
randomized
controlledtrials
,and
naturalexperiments
.1Equally
urgentis
post-deploymentmonitoring
toevaluate
whetherAIinnovationsdowhattheysaytheyare
doing,whethertheyaresafe,andwhethertheyhaveexternalities.WealsoneedtocontinuouslymeasureAIsystemsinthe?eldsoastobeabletoincre-
mentallyimprovethem.Inother,lowerrisksituations,themarketplaceandobservationalstudiescanassesse?ectivenessofAItoolswithoutneedingthesame
rigor,suchasfor
AItoolsforprogrammers
.
Havingcoveredthe?veguidelines,thenextpartsetsthecontextforthecurrentexcitementaboutAI.
I.PuttingPragmaticAIinContext
HistoryofTechnologicalParadigmShifts
Similartothedawnoftelevision,computers,
nuclearpower,andtheinternet,uncompromising
antagonisticpositionsarebeingtakenintheseearlydaysofpracticalAI.Thepolarizeddiscourseonthis
newtechnologyhasdevolvedcurrentlyintoastando?between“
accelerationists
”and“
doomers
.”LikemostpractitionersofAI,webelieverealityismorenuanced.
OnedebatedissueistheroleofthegovernmentinAI’sdevelopment.Recente?ortsbycompaniesto
developAIsystemshavebeenlikenedtothe
ManhattanProject
inthe1940sorthe
SpaceRace
ofthe1960s.Intermsofinvestmentsize,thenearly
$2B
1Anaturalexperimentisaresearchstudywhere
individualsareexposedtodi?erentconditions,likea
controlgroup,notbytheresearcher'sdesignbutbya
naturallyoccurringeventorpolicychange.Researchers
treatsuchastudyasactingasifrandomassignment
occurred,allowingthemtoobserveandanalyzethee?ectswithoutactivelymanipulatingvariables.Thisoptionisoftenusedwhencontrolledexperimentsarenotfeasibleduetoethicalorpracticallimitations.
4
fortheManhattanProjectwouldbe$27Bintoday’s
dollars
,andthe
$26Btoputapersononthemoon
wouldbe$318Btoday
.WhilecurrentAIisroughlycomparableintermsofsizeofinvestment,thebigdi?erenceisthattheU.S.governmentfundedthosee?ortswhileprivateindustrybacksthisone,and
mostofthetalentinvolvedareintheAIindustry.
Giventhisrelationship,weneedanewinnovationinfrastructure.PolicychangestoimprovetheimpactofAIarelikelybestaccomplishedviacollaboration
betweengovernment,industry,andacademia.2Asahistoricalprecedent,wecanlookattherolethe
governmentplayedinthedevelopmentofintegratedcircuitchipsandcars.
TheU.S.government’sApolloandMinutemanprogramsused>95%ofallchipsmadein1965.
Inthe1960s,thegovernmentwastheprimary
consumerofchips,asthesmallersizeandlower
powerofchipswasvitalintheSpaceRace.
Over95%
ofthechipsmadein1965wereusedbytheApollo
andMinutemanprograms
.Thismanufacturing
volumeallowedthenascentsemiconductorindustrytoimproveitsfabricationprowesssoitcouldenter
themuchlargercommercialmarketbytheendofthedecade.Twoyearslater,
Inteldeliveredthe?rst
microprocessor
.Thegovernmentalsofunded
universityresearchthathelpedpushthefrontiersof
chipdesign
andmanufacturing,helping
Moore’sLaw
tocontinueformorethan50years.
2Inadditiontouniversitieshelpingadvancetheresearchfrontier,thepeopleinindustryandgovernmentpursuingAItechnologyandpolicyareeducatedatuniversities.EnablinguniversitiestoprepareindividualstoadvanceAI,aswellastoeducatethebroadpopulationtothriveinaworldof
ubiquitousAI,iscrucialtooursharedfuture.
Inthe?rsthalfofthe20thcentury,car
manufacturersbene?tedas
governmentsbuiltand
improvedroadsandfreewaysfundedbygasoline
taxes,createdtra?clightsandtravelsigns,and
licenseddrivers
.Inthe1960s,theU.S.createdthe
NationalHighwayTra?cSafetyAdministration
andthe
EnvironmentalProtectionAgency
,whichset
societalbene?tingstandardsoncarsafetyand
emissionsforthewholeindustrythatmighthave
beendi?cultforindividualcarmanufacturerstodoontheirown.Morerecently,thegovernmenthas
fundedacademicresearchtoimprovecars.ExamplesareDARPA’sself-drivingchallenge(
wonbyacademic
researchers
),
automotivesafety
,and
fuele?ciency
.
Weenvisionacoordinatedpublic-private
partnershipforAI.Itsgoalwouldbetoremove
bureaucraticroadblocks(e.g.,tosharingdata),ensuresafety,andprovidetransparencyandeducationto
policymakersandthepublic.Inadditiontolearning
fromhistoricalprecedentsforthedevelopmentofAIsystems,weshouldalsolearnfromthehistoryofhowtransformativetechnologieshavebeendeployed.
Onelessonlearnedfromtherolloutsofparadigm-shiftingtechnologieslikebroadbandinternet,cloud,mobiledevices,andsocialmediaisthattheir
deploymentwaslengthierthantechnologistspredicted,buttheirimpactwasevenmorewidespread.Quoting
BillGates
:
OnethingI’velearnedinmyworkwithMicrosoftisthatinnovationtakeslongerthanmany
peopleexpect,butitalsotendstobemorerevolutionarythantheyimagine.
Anotherlessonisthatpredictionsoftechnologicalimpactfrompeopleinother?eldsaresimilarly
inaccurate[NationalAcademies]:
…commentatorsandexpertsofall
stripes—socialandnaturalscientists,historians,andjournalists—haveanalmostunblemishedrecordofincorrectlyforecastingthelong-run
consequencesoftechnologicalinnovations.
Athirdlessonisthatitisoftenhardtoaccuratelypredicttheunintendednegativesidee?ectsuntil
afterthetechnologieswerewidelydeployed,withsocialnetworkingastheprimeexample.
5
TimewilltellifAIprovestobeanexceptiontothesethreelessons.
Arti?cialIntelligence(AI)
BeforewediscussAI’simpactwithineachofourhalf-dozen?elds,let’sreviewhowwegothere.ThetermArti?cialIntelligence(AI)wascoinedtode?nethescienceandengineeringofmakingintelligentmachines
in1956,only?veyearsafterthe?rstcommercialcomputer.3
OnestrandofAIthatbecamepopularoverthenextdecadeswastocreateasetofrulesoftheform“if
thishappensdothat,ifthathappensdothis.”The
beliefwasthatwithsu?cientlyaccurateandlarge
setsofrules,intelligencewouldemerge.Withinthe
bigtentofAI,acontrarianstranddidnotacceptthathumanswouldeverbeabletowritesuchasetof
rules.Theybelievedthattheonlyhopewastolearntherulesfromthedata.Thatis,itwasmuchhardertoprogramacomputertobecleverthanitwastoprogramacomputertolearntobeclever.JustthreeyearsafterAIwasde?ned,theychristenedthisbottom-up
approachmachinelearning(ML).4
OnebranchoftheMLcommunitybelievedtheonlyhopeforcreatingaprogramthatcouldlearnfrom
datawouldbetoimitateouroneclearexampleofintelligence:thehumanbrain.Ourbrainsconsistof100billionneuronswith100trillionconnections
betweenthem.ThisversionofMLisbasedonavery
3In1961,Turinglaureate
DougEnglebart
tookthe
contrarianapproachofaugmentinghumanintellect
[Englebart],whichisthetermBrynjolfssonusedinhis
paper.Weinsteadusethephrase“improvinghuman
productivity”becausewethinkitiseasierforthepublicandpolicymakerstounderstandtheimplicationsofproductivitygainsthanofaugmentation.
4ThisabbreviatedhistoryofAIissimpli?ed.Inthe1950stherewasaferventenergyaroundtheconceptofintelligentmachinesinspiredbyhumanbrains/intelligence,andduringthe1960sthevarioustraditionsgrewapart.InthebigthreeCSAIdepartmentsofthetimethatwerefundedbyDARPA(MIT,Stanford,CMU),thetop-down“symbolicAI”traditiontookhold.Rule-basedsystemsmentionedabovearejust
onebranchofsymbolicAI.Neuralnetworksalsogotabig
boostinthemid-1980s,e.g.,theresearchbyTuringlaureateYannLeCunonhandwritingrecognitionusing
MNIST
.
simplemodelofaneuron,sothisformofML(thatisalsowithinthebigtentofAI)iscalledaneural
network.Atypicalneuralnetworkmightuse100
millionarti?cialneurons.Becausecurrentversionsofneuralnetworkshavemanymorelayersofarti?cialneuronsthaninthepast,recentincarnationsarealsocalleddeepneuralnetworksordeeplearning.
Neuralnetworkshavetwophases,trainingand
serving(alsocalledinference).Trainingisanalogoustobeingeducatedincollegeandservingislikeworkingaftergraduation.Traininganeuralnetworkinvolvesrepeatedlyshowingitlabeleddata(e.g.,images
identi?edascatsordogs)withthesystemadjustingitsarti?cialneuronsuntilitgivessu?cientlyaccurateanswerstoquestionsaboutthatdata(e.g.,isitacatoradog).Oncetrained,thegoalisthatthemodel
shouldworkwellwithdataithasnotyetseen(e.g.,correctlydeterminingifanimageisofacatoradog).
TheRussiandollsofAI.
AfterdecadesofdebatesaboutwhichAI
philosophywasbest,in2012neuralnetworksstartedtosoundlybeatthecompetition.Thebreakthrough
12yearsagowasn’tsomuchtheinventionofnew
neuralnetworkalgorithmsasitwasthatMoore’sLawledtomachinesthatwere10,000timesfasterandwecouldnetworkmanytogethertoworkinconcert.Thatenabledtrainingusing
10,000timesmorelabeled
data
availablefromtheWorldWideWeb.VirtuallyallnewsstoriestodayconcerningAIbreakthroughsare,moreprecisely,aboutneuralnetworks.
TheexcitementaboutAIspikedbyChatGPTin2022isaboutmodelswithbillionsofneuronsthattake
6
monthstotrainontensofthousandsofchips
designedsolelyforneuralnetworktraining.Thesegiantneuralnetworkswereinitiallycalledlarge
languagemodels(LLMs)becausethe?rstexamplesperformedamazingfeatsbasedontext.Eventuallythesemodelsbecamemoremultimodal,
incorporatingdatatypesbeyondtextsuchasimages,audio,andvideo.Theterminologyisevolvingwiththetechnology,andLLMsarenowoftencalledfoundationmodels[Bommasanietal.]orfrontiermodels.
Theadventoftheselargefrontiermodelshas
raisedunderstandableconcernsaboutenergyuseofAI.
AppendixI
coversthistopicindetail,butaquick
summaryisthatAIsystemstodayaccountfor
undera
quarter
of
1%ofglobalelectricityuse
,atenthofdigi-talhouseholdapplianceslikeTVs.The
International
EnergyAgencyconsidersevenastrongprojected
increasedenergyconsumptionbyAIfor2030tobe
modest
relativetootherlargertrendslikecontinuedeconomicgrowth,electriccars,andairconditioning.
WhileweusethebroadtermAI,the?eldis
fragmented,coveringmanytechnologies.Our
discussionwillprimarilyfocusongenerativeand
predictiveAIsystems,withabriefdiscussionofsomeotheraspectsofAIwhererelevant.ExamplesareAIassistants(e.g.,
NotebookLM
),chatbots(e.g.,
ChatGPT
),
retrieval-augmentedgeneration
(RAG)
systems5(e.g.,
Perplexity
),and
generativeAIsystems
(e.g.,
Midjourney
).
Arti?cialGeneralIntelligence
(AGI)
BeforewecangettotheimpactofneartermAI,we?rstneedtoconsidertheprospectofarti?cialgeneralintelligence(AGI).AnAIsystemcaneasilywriteanewbedtimestorydailyfeaturingyourchildrenasmain
characters.Adi?erentAIsystemcouldbeatany
humanbeingattheclassicstrategygameofGo.Asofnow,nosingleAIsystemcandobothofthesethings.
5Retrieval-augmentedgeneration(RAG)isanAIframeworkthatcombinesLLMswithtraditionalinformationretrievalsystemstoproducemoreaccurateandrelevanttext.
Eachcandeliveramazingcapabilities,buttheyarepracticallyuselessiftheystrayoutsidetheirlanes.IncontrasttoexistingAI,proponentsarguethatanAGIthatwouldbemultitalented—capableenoughtowinstrategygames,diagnosediseases,analyzepoetry,andcontributetoappliedcomputerscience
innovationsthatcanfurtherenhancethecapacityofAGIsystems.
Ageneralknife.
AGIhasmanyde?nitions,
butoneframework
gainingpopularity
emphasizestherangeoftasksthatanAIsystemreachesatargetthresholdcomparedtopeopleandhowwellitcomparestohuman-level
performanceforagiventask[Morrisetal.].Thresholdsarelabeledbasedontheportionofpeoplethatthe
systemoutperforms:competent(>50%),expert
(>90%),virtuoso(>99%),andsuperhuman(>100%).
AlphaGo
isratedsuperhuman,butonlyforplayingGo,andisnotcompetentatanythingelse.This
breadthversusdepthmetrichelpsclarifyAGIdiscussions.
TremendousattentionisbeingpaidtoAGI,
deservedlysogivenitslargepotentialpositiveand
negativeimpactontheworld.WeapplaudtheseriousinvestigationsofAGI,includingscienti?cworkthat
aimstoclarifyrelevantde?nitionsandlikelyimpacts.
Aswefocusonimpactsofcurrentandnear-termAIsystems,wewillnotdiscussAGIfurther,beyond
mentioningthatprogressonthetopicmayaccelerateboththebene?tsandrisksweoutlinehere.
ThenextpartofthepaperdelvesintotheimpactofAIsystemsinthehalfdozen?eldsweinvestigated.
7
II.DemystifyingthePotentialImpactofAI
Employment
Our?rsttopicfornearer-termAIisamajor
concern:theimpactonjobs[NationalAcademies].Indeed,a
GlobalPublicOpinionPollonAI
foundthatthemajorityexpecttobereplacedatworkbyanAIsysteminthecomingdecade[Loewenetal.].
Technologicaladvancementshavelongledtothedeclineofsomejobsandthecreationofnewones.
FortheU.S.workforce,
63%hadjobsin2018thatdid
notexistin1940
[Autor2022].Figure1shows
examplesoffourjobswherenumberschangedstrikinglyfrom1970to2020.
Despitethedownsideofjobdisruption,ahealthyeconomyreliesonimprovingworkerproductivity.
Two-thirdsoftheworld’spopulationlivesincountries
withbelow-replacementbirthlevels
[Eberstadt]andmanynationsarefacing
laborshortages
[Duarte].
TheU.S.alreadylackscriticalpositionsasvariedas
K-12teachers
,
passengerairlinepilots
,
physicians
,
registerednurses
,
softwareengineers
,and
school
busdrivers
.Tosupplyneededservices,high-income
countriesmusteithergreatlyexpandtheirworkingpopulationorsigni?cantlyimproveworker
productivity[ManyikaandSpence].
Theimpactofproductivitygainsonjobsdependsonwhetherthedemandforgoodsproducedbythatworkiselasticorinelastic.Ifdemandisinelastic,
productivitygainsmeansjobswillbelost
[Bessen].Forexample,agricultureisinelasticintheU.S.,so
gainsmeantdramaticdeclinesinabsolutenumbers(fourfold)anditsportionoftheworkforce(
from40%
in1900to20%in1940,4%in1970,and2%today
)
[Daly].
Ifproductdemandissu?cientlyelastic,
productivity-enhancingtechnologywillincrease
industryemployment
[Bessen].
Forexample,programmerstodayare
tremendouslymoreproductivethantheywerein1970—theyhavemorepowerfulprogramming
languagesandtools,plusMoore’sLawhelped
improvehardwareamillionfold—yettherewere11timesmoreprog
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手車交易協議個人
- 勞動合同解除協議書大全七篇
- 頸動脈斑塊病因介紹
- 公司借款的協議書范本10篇
- 單位股東合作的協議書
- 藥物中毒性周圍神經病病因介紹
- 2023-2024學年天津市五區(qū)縣重點校聯考高三(上)期末語文試卷
- 2023年天津市部分區(qū)高考語文二模試卷
- 江蘇省鹽城市建湖縣漢開書院學校2023-2024學年七年級上學期第二次月考道德與法治試題(解析版)-A4
- 食品工廠機械與設備模擬習題與參考答案
- 江蘇省鹽城市大豐區(qū)部分學校2024-2025學年九年級上學期12月調研考試化學試題(含答案)
- 《上課用的小動物過冬》課件
- 2024版建筑工程設計居間協議3篇
- 動畫制作員職業(yè)技能大賽考試題庫(濃縮500題)
- 房屋租賃合同
- 湖北省十一校2024-2025學年高三上學期第一次聯考物理試卷 含解析
- 12《富起來到強起來》第一課時(說課稿)統編版道德與法治五年級下冊
- 問題解決策略:歸納課件2024-2025學年北師大版數學七年級上冊
- 【初中道法】擁有積極的人生態(tài)度(課件)-2024-2025學年七年級道德與法治上冊(統編版2024)
- 年終總結安全類
- 銷售團隊員工轉正考核方案
評論
0/150
提交評論