塑造人工智能對數十億人生活的影響 Shaping AIs Impact on Billions of Lives_第1頁
塑造人工智能對數十億人生活的影響 Shaping AIs Impact on Billions of Lives_第2頁
塑造人工智能對數十億人生活的影響 Shaping AIs Impact on Billions of Lives_第3頁
塑造人工智能對數十億人生活的影響 Shaping AIs Impact on Billions of Lives_第4頁
塑造人工智能對數十億人生活的影響 Shaping AIs Impact on Billions of Lives_第5頁
已閱讀5頁,還剩53頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1

ShapingAI'sImpactonBillionsofLives

Mariano-FlorentinoCuéllar

,

JeffDean

,

FinaleDoshi-Velez

,

JohnHennessy

,

AndyKonwinski

,

SanmiKoyejo

,

PelonomiMoiloa

,

EmmaPierson

,and

DavidPatterson

Introduction1

I.PuttingPragmaticAIinContext3

HistoryofTechnologicalParadigmShifts3

ArtificialIntelligence(AI)5

ArtificialGeneralIntelligence(AGI)6

II.DemystifyingthePotentialImpactofAI7

Employment7

Education9

Healthcare12

Information/News/SocialNetworking14

Media/Entertainment16

Governance/NationalSecurity/OpenSource18

Science21

III.HarnessingAIforthePublicGood23

Milestones,Prizes,andResearchCenters23

Conclusion24

Acknowledgements25

AppendixI:EnergyUsageofAI26

AppendixII:TheRapidUpskillingPrize27

Bibliography27

Authors30

Introduction

Arti?cialIntelligence(AI),likeanytransformative

technology,hasthepotentialtobeadouble-edged

sword,leadingeithertowardsigni?cant

advancementsordetrimentaloutcomesforsocietyasawhole.Asisoftenthecasewhenitcomesto

widely-usedtechnologiesinmarketeconomies(e.g.,carsandsemiconductorchips),commercialinteresttendstobethepredominantguidingfactor.TheAI

communityisatriskofbecomingpolarizedtoeithertakealaissez-faireattitudetowardAIdevelopment,ortocallforgovernmentoverregulation.BetweenthesetwopolesweargueforthecommunityofAI

practitionerstoconsciouslyandproactivelyworkfor

thecommongood.Thispapero?ersablueprintforanewtypeofinnovationinfrastructureincluding18

concretemilestonestoguideAIresearchinthat

direction.OurviewisthatwearestillintheearlydaysofpracticalAI,andfocusede?ortsbypractitioners,

policymakers,andotherstakeholderscanstillmaxi-mizetheupsidesofAIandminimizeitsdownsides.

Too?erasu?ciently-broadandrealistic

perspectivethatcapturesthepossibilities,we’ve

assembledateamcomposedofseniorcomputer

scientists,policymakers,andrisingstarsinAIfrom

academia,startups,andbigtech—ateamthatcoversmanyAIdomains(seeAuthors).

Inadditiontoourownexpertise,ourperspectiveisinformedbyinterviewswithtwodozenexpertsin

2

various?elds.WetalkedtoluminariessuchasrecentNobelist

JohnJumper

onscience,President

Barack

Obama

ongovernance,formerUNAmbassadorandformerNationalSecurityAdvisor

SusanRice

on

security,philanthropist

EricSchmidt

onseveraltopics,andscience?ctionnovelist

NealStephenson

on

entertainment.Wealsometwithexpertsinlabor

economics,education,healthcare,andinformation.Thisongoingdialogueandcollaborativee?orthas

producedacomprehensive,realisticviewofwhattheactualimpactofAIcouldbe,fromadiverseassembly

ofthinkerswithdeepunderstandingofthistechnologyandthesedomains.

Ourviewisthatwearestillinthe

earlydaysofpracticalAI,andthat

focusedefortsbypractitioners,

policymakers,andotherstakeholders

canstillmaximizetheupsidesofAI

andminimizeitsdownsides.

ThesediscussionshavecrystallizedourconvictionthatrecentAImodelshaveshownaremarkable

promisetoin?uencetheworld,potentiallya?ectingbillionsoflivesforbetterorworse.WethinkthebestbetgoingforwardistoassumeAIprogresswill

continueorspeedup,andnotslowdown.AI'simpactonsocietywillbeprofound.

Fromtheseexchanges,?verecurringguidelines

emerged,whichformthecornerstoneofaframeworkforbeginningtoharnessAIinserviceofthepublic

good.Theynotonlyguideoure?ortsindiscoverybutalsoshapeourapproachtodeployingthis

transformativetechnologyresponsiblyandethically.

1.HumansandAIsystemsworkingasateam

candomorethaneitherontheirown.ApplicationsofAIfocusedonhumanproductivityproducelarger

productivityincreasesthanthosefocusedon

replacinghumanlabor[Brynjolfsson][National

Academies].Inadditiontoincreasingpeople’s

employability,toolsaimedatmakingpeoplemore

productiveletthemactassafeguardsifAIsystems

veero?course.AIattimescanleveltheplaying?eldbetweenthosewhohavemanyresourcesandthoseoflimitedresources.SincepeopleandAIsystems

tendtomakedi?erentmistakes,collaboratingwithAImayimproveresults.Inshort,focusingonhuman

productivityhelpsbothpeopleandAItoolssucceed.Policiesshouldaimtowardinnovationsthatencour-agehuman-AIcollaborationwhilereducingrisks.

2.Toincreaseemployment,aimfor

productivityimprovementsin?eldsthatwould

createmorejobs.Despitetremendousproductivitygainsincomputingandairlinetravel,theUnited

Statesin2020had11timesmoreprogrammersand8timesmorecommercialairlinepilotsthanin1970.

Thisgrowthisbecauseprogrammingandairline

transportationwere?eldswithwhatlaboreconomistscallanelasticdemand.Goodswithelasticdemandarethosewhereadecreaseinpriceresultsinalarge

increaseinthequantityacquired.Agriculture,ontheotherhand,isinelasticintheU.S.,soproductivity

gainshavereducedthenumberofagriculturejobsfourfoldinonehumanlifetime(1940to2020).

Discussionswithexpertsinother?eldswilllikely

uncovermoreopportunitiesforAItoincrease

productivity.IfpolicymakersandpractitionersaimAIsystemsatimprovingproductivityinelastic?elds,AIcanincreaseemployment,despitepublicfearstothecontrary.AndasrecentNobelistJohnJumper

observed,onewaytoacceleratescienti?cprogressistoimprovetheproductivityofscientists,whichisthegoalofa“scientist’saide”(see

Science

).ProductivitygainsinsciencefromAIcouldprovetobeextremelyvaluabletosociety[NationalAcademies].

3.AIsystemsshouldinitiallyaimatremovingthedrudgeryofcurrenttasks.Ifpolicymakersandpractitioners?rsttargetAIsystemsthatautomate

menialandunful?llingaspectsofcurrentjobs,they

canmakeworkmoremeaningfulandenjoyable.

Doctorsandnurseschoosetheircareersbecause

theywanttohelppatients,nottodoendless

insurancedocumentation.Schoolteachersmayprefertospendtheirtimeonstudentinteractionratherthan

gradingandrecordkeeping.Ratherthanskipaheadto

3

newAIinnovations,?rstprovideAItoolstoimprovethemeaningfulnessofpeople’scurrentworkin

hospitalsandclassrooms.Forexample,AI-powered“teacher’saide”tools(see

Education

)couldautomatetasksteachers?ndunful?lling,freeinguptimeto

spendwithstudentsandmakingteachingworkloadsmoremanageable.Asecondarybene?tisthattheymightbemorelikelytouseAItoolsinthefuture.

Sisyphus’sdrudgery.HecouldhaveusedAI’shelp.

4.TheimpactofAIvariesbygeography.

PhilanthropistEricSchmidtemphasizedthatwhile

nationswithadvancedeconomiesworryaboutAI

displacinghighlytrainedprofessionals,countrieswith

leaneconomiesfaceshortagesofthesesameskilledexperts(see

Employment

).AIcouldmakesuch

expertisemorewidelyavailableinplaceswith

extremescarcityoftrainedworkersandwithinsuf-?cientfunding,

potentiallyenhancingqualityoflife

andeconomicgrowth

.AIsystemscouldbecomeastransformativeforthelow-andmiddle-income

nationsas

mobilephoneshavebeen

[Rotondi].Forexample,a“healthcareaide”thatimprovedtheskillsetsandproductivityofnursesandphysician

assistantscouldalsogivemorepatientsaccessto

qualityhealthcareinregionsfacingphysician

shortages(see

Healthcare

).MultilingualAImodelsonsmartphonescangreatlyhelppeopleinlow-and

middle-incomecountriesgainaccesstoinformation,education,media/entertainment,andmore.Better

economiesandservicesmayeveno?er

alternatives

toemigrationforsomeinmiddle-incomecountries

.

5.DeterminethebestmetricsandmethodstoevaluateAIinnovations.WemustmeasureAI

accuratelytoevaluateitsrealpotential.Inhigh-stakesdomains,becausewecan'triskharmingparticipants,

weneedtousegoldstandardtoolstoevaluate

innovationaccuratelyandidentifypossiblelimitationsbeforewidedeployment:

A/Btesting

,

randomized

controlledtrials

,and

naturalexperiments

.1Equally

urgentis

post-deploymentmonitoring

toevaluate

whetherAIinnovationsdowhattheysaytheyare

doing,whethertheyaresafe,andwhethertheyhaveexternalities.WealsoneedtocontinuouslymeasureAIsystemsinthe?eldsoastobeabletoincre-

mentallyimprovethem.Inother,lowerrisksituations,themarketplaceandobservationalstudiescanassesse?ectivenessofAItoolswithoutneedingthesame

rigor,suchasfor

AItoolsforprogrammers

.

Havingcoveredthe?veguidelines,thenextpartsetsthecontextforthecurrentexcitementaboutAI.

I.PuttingPragmaticAIinContext

HistoryofTechnologicalParadigmShifts

Similartothedawnoftelevision,computers,

nuclearpower,andtheinternet,uncompromising

antagonisticpositionsarebeingtakenintheseearlydaysofpracticalAI.Thepolarizeddiscourseonthis

newtechnologyhasdevolvedcurrentlyintoastando?between“

accelerationists

”and“

doomers

.”LikemostpractitionersofAI,webelieverealityismorenuanced.

OnedebatedissueistheroleofthegovernmentinAI’sdevelopment.Recente?ortsbycompaniesto

developAIsystemshavebeenlikenedtothe

ManhattanProject

inthe1940sorthe

SpaceRace

ofthe1960s.Intermsofinvestmentsize,thenearly

$2B

1Anaturalexperimentisaresearchstudywhere

individualsareexposedtodi?erentconditions,likea

controlgroup,notbytheresearcher'sdesignbutbya

naturallyoccurringeventorpolicychange.Researchers

treatsuchastudyasactingasifrandomassignment

occurred,allowingthemtoobserveandanalyzethee?ectswithoutactivelymanipulatingvariables.Thisoptionisoftenusedwhencontrolledexperimentsarenotfeasibleduetoethicalorpracticallimitations.

4

fortheManhattanProjectwouldbe$27Bintoday’s

dollars

,andthe

$26Btoputapersononthemoon

wouldbe$318Btoday

.WhilecurrentAIisroughlycomparableintermsofsizeofinvestment,thebigdi?erenceisthattheU.S.governmentfundedthosee?ortswhileprivateindustrybacksthisone,and

mostofthetalentinvolvedareintheAIindustry.

Giventhisrelationship,weneedanewinnovationinfrastructure.PolicychangestoimprovetheimpactofAIarelikelybestaccomplishedviacollaboration

betweengovernment,industry,andacademia.2Asahistoricalprecedent,wecanlookattherolethe

governmentplayedinthedevelopmentofintegratedcircuitchipsandcars.

TheU.S.government’sApolloandMinutemanprogramsused>95%ofallchipsmadein1965.

Inthe1960s,thegovernmentwastheprimary

consumerofchips,asthesmallersizeandlower

powerofchipswasvitalintheSpaceRace.

Over95%

ofthechipsmadein1965wereusedbytheApollo

andMinutemanprograms

.Thismanufacturing

volumeallowedthenascentsemiconductorindustrytoimproveitsfabricationprowesssoitcouldenter

themuchlargercommercialmarketbytheendofthedecade.Twoyearslater,

Inteldeliveredthe?rst

microprocessor

.Thegovernmentalsofunded

universityresearchthathelpedpushthefrontiersof

chipdesign

andmanufacturing,helping

Moore’sLaw

tocontinueformorethan50years.

2Inadditiontouniversitieshelpingadvancetheresearchfrontier,thepeopleinindustryandgovernmentpursuingAItechnologyandpolicyareeducatedatuniversities.EnablinguniversitiestoprepareindividualstoadvanceAI,aswellastoeducatethebroadpopulationtothriveinaworldof

ubiquitousAI,iscrucialtooursharedfuture.

Inthe?rsthalfofthe20thcentury,car

manufacturersbene?tedas

governmentsbuiltand

improvedroadsandfreewaysfundedbygasoline

taxes,createdtra?clightsandtravelsigns,and

licenseddrivers

.Inthe1960s,theU.S.createdthe

NationalHighwayTra?cSafetyAdministration

andthe

EnvironmentalProtectionAgency

,whichset

societalbene?tingstandardsoncarsafetyand

emissionsforthewholeindustrythatmighthave

beendi?cultforindividualcarmanufacturerstodoontheirown.Morerecently,thegovernmenthas

fundedacademicresearchtoimprovecars.ExamplesareDARPA’sself-drivingchallenge(

wonbyacademic

researchers

),

automotivesafety

,and

fuele?ciency

.

Weenvisionacoordinatedpublic-private

partnershipforAI.Itsgoalwouldbetoremove

bureaucraticroadblocks(e.g.,tosharingdata),ensuresafety,andprovidetransparencyandeducationto

policymakersandthepublic.Inadditiontolearning

fromhistoricalprecedentsforthedevelopmentofAIsystems,weshouldalsolearnfromthehistoryofhowtransformativetechnologieshavebeendeployed.

Onelessonlearnedfromtherolloutsofparadigm-shiftingtechnologieslikebroadbandinternet,cloud,mobiledevices,andsocialmediaisthattheir

deploymentwaslengthierthantechnologistspredicted,buttheirimpactwasevenmorewidespread.Quoting

BillGates

:

OnethingI’velearnedinmyworkwithMicrosoftisthatinnovationtakeslongerthanmany

peopleexpect,butitalsotendstobemorerevolutionarythantheyimagine.

Anotherlessonisthatpredictionsoftechnologicalimpactfrompeopleinother?eldsaresimilarly

inaccurate[NationalAcademies]:

…commentatorsandexpertsofall

stripes—socialandnaturalscientists,historians,andjournalists—haveanalmostunblemishedrecordofincorrectlyforecastingthelong-run

consequencesoftechnologicalinnovations.

Athirdlessonisthatitisoftenhardtoaccuratelypredicttheunintendednegativesidee?ectsuntil

afterthetechnologieswerewidelydeployed,withsocialnetworkingastheprimeexample.

5

TimewilltellifAIprovestobeanexceptiontothesethreelessons.

Arti?cialIntelligence(AI)

BeforewediscussAI’simpactwithineachofourhalf-dozen?elds,let’sreviewhowwegothere.ThetermArti?cialIntelligence(AI)wascoinedtode?nethescienceandengineeringofmakingintelligentmachines

in1956,only?veyearsafterthe?rstcommercialcomputer.3

OnestrandofAIthatbecamepopularoverthenextdecadeswastocreateasetofrulesoftheform“if

thishappensdothat,ifthathappensdothis.”The

beliefwasthatwithsu?cientlyaccurateandlarge

setsofrules,intelligencewouldemerge.Withinthe

bigtentofAI,acontrarianstranddidnotacceptthathumanswouldeverbeabletowritesuchasetof

rules.Theybelievedthattheonlyhopewastolearntherulesfromthedata.Thatis,itwasmuchhardertoprogramacomputertobecleverthanitwastoprogramacomputertolearntobeclever.JustthreeyearsafterAIwasde?ned,theychristenedthisbottom-up

approachmachinelearning(ML).4

OnebranchoftheMLcommunitybelievedtheonlyhopeforcreatingaprogramthatcouldlearnfrom

datawouldbetoimitateouroneclearexampleofintelligence:thehumanbrain.Ourbrainsconsistof100billionneuronswith100trillionconnections

betweenthem.ThisversionofMLisbasedonavery

3In1961,Turinglaureate

DougEnglebart

tookthe

contrarianapproachofaugmentinghumanintellect

[Englebart],whichisthetermBrynjolfssonusedinhis

paper.Weinsteadusethephrase“improvinghuman

productivity”becausewethinkitiseasierforthepublicandpolicymakerstounderstandtheimplicationsofproductivitygainsthanofaugmentation.

4ThisabbreviatedhistoryofAIissimpli?ed.Inthe1950stherewasaferventenergyaroundtheconceptofintelligentmachinesinspiredbyhumanbrains/intelligence,andduringthe1960sthevarioustraditionsgrewapart.InthebigthreeCSAIdepartmentsofthetimethatwerefundedbyDARPA(MIT,Stanford,CMU),thetop-down“symbolicAI”traditiontookhold.Rule-basedsystemsmentionedabovearejust

onebranchofsymbolicAI.Neuralnetworksalsogotabig

boostinthemid-1980s,e.g.,theresearchbyTuringlaureateYannLeCunonhandwritingrecognitionusing

MNIST

.

simplemodelofaneuron,sothisformofML(thatisalsowithinthebigtentofAI)iscalledaneural

network.Atypicalneuralnetworkmightuse100

millionarti?cialneurons.Becausecurrentversionsofneuralnetworkshavemanymorelayersofarti?cialneuronsthaninthepast,recentincarnationsarealsocalleddeepneuralnetworksordeeplearning.

Neuralnetworkshavetwophases,trainingand

serving(alsocalledinference).Trainingisanalogoustobeingeducatedincollegeandservingislikeworkingaftergraduation.Traininganeuralnetworkinvolvesrepeatedlyshowingitlabeleddata(e.g.,images

identi?edascatsordogs)withthesystemadjustingitsarti?cialneuronsuntilitgivessu?cientlyaccurateanswerstoquestionsaboutthatdata(e.g.,isitacatoradog).Oncetrained,thegoalisthatthemodel

shouldworkwellwithdataithasnotyetseen(e.g.,correctlydeterminingifanimageisofacatoradog).

TheRussiandollsofAI.

AfterdecadesofdebatesaboutwhichAI

philosophywasbest,in2012neuralnetworksstartedtosoundlybeatthecompetition.Thebreakthrough

12yearsagowasn’tsomuchtheinventionofnew

neuralnetworkalgorithmsasitwasthatMoore’sLawledtomachinesthatwere10,000timesfasterandwecouldnetworkmanytogethertoworkinconcert.Thatenabledtrainingusing

10,000timesmorelabeled

data

availablefromtheWorldWideWeb.VirtuallyallnewsstoriestodayconcerningAIbreakthroughsare,moreprecisely,aboutneuralnetworks.

TheexcitementaboutAIspikedbyChatGPTin2022isaboutmodelswithbillionsofneuronsthattake

6

monthstotrainontensofthousandsofchips

designedsolelyforneuralnetworktraining.Thesegiantneuralnetworkswereinitiallycalledlarge

languagemodels(LLMs)becausethe?rstexamplesperformedamazingfeatsbasedontext.Eventuallythesemodelsbecamemoremultimodal,

incorporatingdatatypesbeyondtextsuchasimages,audio,andvideo.Theterminologyisevolvingwiththetechnology,andLLMsarenowoftencalledfoundationmodels[Bommasanietal.]orfrontiermodels.

Theadventoftheselargefrontiermodelshas

raisedunderstandableconcernsaboutenergyuseofAI.

AppendixI

coversthistopicindetail,butaquick

summaryisthatAIsystemstodayaccountfor

undera

quarter

of

1%ofglobalelectricityuse

,atenthofdigi-talhouseholdapplianceslikeTVs.The

International

EnergyAgencyconsidersevenastrongprojected

increasedenergyconsumptionbyAIfor2030tobe

modest

relativetootherlargertrendslikecontinuedeconomicgrowth,electriccars,andairconditioning.

WhileweusethebroadtermAI,the?eldis

fragmented,coveringmanytechnologies.Our

discussionwillprimarilyfocusongenerativeand

predictiveAIsystems,withabriefdiscussionofsomeotheraspectsofAIwhererelevant.ExamplesareAIassistants(e.g.,

NotebookLM

),chatbots(e.g.,

ChatGPT

),

retrieval-augmentedgeneration

(RAG)

systems5(e.g.,

Perplexity

),and

generativeAIsystems

(e.g.,

Midjourney

).

Arti?cialGeneralIntelligence

(AGI)

BeforewecangettotheimpactofneartermAI,we?rstneedtoconsidertheprospectofarti?cialgeneralintelligence(AGI).AnAIsystemcaneasilywriteanewbedtimestorydailyfeaturingyourchildrenasmain

characters.Adi?erentAIsystemcouldbeatany

humanbeingattheclassicstrategygameofGo.Asofnow,nosingleAIsystemcandobothofthesethings.

5Retrieval-augmentedgeneration(RAG)isanAIframeworkthatcombinesLLMswithtraditionalinformationretrievalsystemstoproducemoreaccurateandrelevanttext.

Eachcandeliveramazingcapabilities,buttheyarepracticallyuselessiftheystrayoutsidetheirlanes.IncontrasttoexistingAI,proponentsarguethatanAGIthatwouldbemultitalented—capableenoughtowinstrategygames,diagnosediseases,analyzepoetry,andcontributetoappliedcomputerscience

innovationsthatcanfurtherenhancethecapacityofAGIsystems.

Ageneralknife.

AGIhasmanyde?nitions,

butoneframework

gainingpopularity

emphasizestherangeoftasksthatanAIsystemreachesatargetthresholdcomparedtopeopleandhowwellitcomparestohuman-level

performanceforagiventask[Morrisetal.].Thresholdsarelabeledbasedontheportionofpeoplethatthe

systemoutperforms:competent(>50%),expert

(>90%),virtuoso(>99%),andsuperhuman(>100%).

AlphaGo

isratedsuperhuman,butonlyforplayingGo,andisnotcompetentatanythingelse.This

breadthversusdepthmetrichelpsclarifyAGIdiscussions.

TremendousattentionisbeingpaidtoAGI,

deservedlysogivenitslargepotentialpositiveand

negativeimpactontheworld.WeapplaudtheseriousinvestigationsofAGI,includingscienti?cworkthat

aimstoclarifyrelevantde?nitionsandlikelyimpacts.

Aswefocusonimpactsofcurrentandnear-termAIsystems,wewillnotdiscussAGIfurther,beyond

mentioningthatprogressonthetopicmayaccelerateboththebene?tsandrisksweoutlinehere.

ThenextpartofthepaperdelvesintotheimpactofAIsystemsinthehalfdozen?eldsweinvestigated.

7

II.DemystifyingthePotentialImpactofAI

Employment

Our?rsttopicfornearer-termAIisamajor

concern:theimpactonjobs[NationalAcademies].Indeed,a

GlobalPublicOpinionPollonAI

foundthatthemajorityexpecttobereplacedatworkbyanAIsysteminthecomingdecade[Loewenetal.].

Technologicaladvancementshavelongledtothedeclineofsomejobsandthecreationofnewones.

FortheU.S.workforce,

63%hadjobsin2018thatdid

notexistin1940

[Autor2022].Figure1shows

examplesoffourjobswherenumberschangedstrikinglyfrom1970to2020.

Despitethedownsideofjobdisruption,ahealthyeconomyreliesonimprovingworkerproductivity.

Two-thirdsoftheworld’spopulationlivesincountries

withbelow-replacementbirthlevels

[Eberstadt]andmanynationsarefacing

laborshortages

[Duarte].

TheU.S.alreadylackscriticalpositionsasvariedas

K-12teachers

,

passengerairlinepilots

,

physicians

,

registerednurses

,

softwareengineers

,and

school

busdrivers

.Tosupplyneededservices,high-income

countriesmusteithergreatlyexpandtheirworkingpopulationorsigni?cantlyimproveworker

productivity[ManyikaandSpence].

Theimpactofproductivitygainsonjobsdependsonwhetherthedemandforgoodsproducedbythatworkiselasticorinelastic.Ifdemandisinelastic,

productivitygainsmeansjobswillbelost

[Bessen].Forexample,agricultureisinelasticintheU.S.,so

gainsmeantdramaticdeclinesinabsolutenumbers(fourfold)anditsportionoftheworkforce(

from40%

in1900to20%in1940,4%in1970,and2%today

)

[Daly].

Ifproductdemandissu?cientlyelastic,

productivity-enhancingtechnologywillincrease

industryemployment

[Bessen].

Forexample,programmerstodayare

tremendouslymoreproductivethantheywerein1970—theyhavemorepowerfulprogramming

languagesandtools,plusMoore’sLawhelped

improvehardwareamillionfold—yettherewere11timesmoreprog

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論