版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇無錫市錫山中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.2.函數(shù)的圖象可能是()A. B. C. D.3.已知,則()A.2 B. C. D.34.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.5.已知平面向量,,,則實數(shù)x的值等于()A.6 B.1 C. D.6.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.197.甲在微信群中發(fā)了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的概率是()A. B. C. D.8.已知橢圓的中心為原點,為的左焦點,為上一點,滿足且,則橢圓的方程為()A. B. C. D.9.已知向量,且,則m=()A.?8 B.?6C.6 D.810.己知函數(shù)若函數(shù)的圖象上關(guān)于原點對稱的點有2對,則實數(shù)的取值范圍是()A. B. C. D.11.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.12.已知函數(shù),若函數(shù)在上有3個零點,則實數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列()中,若,,則的值是______.14.正三棱柱的底面邊長為2,側(cè)棱長為,為中點,則三棱錐的體積為________.15.若的展開式中只有第六項的二項式系數(shù)最大,則展開式中各項的系數(shù)和是________.16.展開式中的系數(shù)為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當(dāng)直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設(shè)直線、的交點為;試問的橫坐標(biāo)是否為定值?若是,求出定值;若不是,請說明理由.18.(12分)已知函數(shù).(1)設(shè),若存在兩個極值點,,且,求證:;(2)設(shè),在不單調(diào),且恒成立,求的取值范圍.(為自然對數(shù)的底數(shù)).19.(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為;(1)求直線的直角坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交點分別為,,點,求的值.20.(12分)數(shù)列滿足,是與的等差中項.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.(12分)11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經(jīng)過1輪投球,記甲的得分為,求的分布列;(2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計得分,甲的得分高于乙的得分的概率.①求;②規(guī)定,經(jīng)過計算機計算可估計得,請根據(jù)①中的值分別寫出a,c關(guān)于b的表達式,并由此求出數(shù)列的通項公式.22.(10分)已知函數(shù),其中.(1)討論函數(shù)的零點個數(shù);(2)求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.2、A【解析】
先判斷函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結(jié)合排除法可得出正確選項.【詳解】函數(shù)的定義域為,,該函數(shù)為偶函數(shù),排除B、D選項;當(dāng)時,,排除C選項.故選:A.【點睛】本題考查根據(jù)函數(shù)的解析式辨別函數(shù)的圖象,一般分析函數(shù)的定義域、奇偶性、單調(diào)性、零點以及函數(shù)值符號,結(jié)合排除法得出結(jié)果,考查分析問題和解決問題的能力,屬于中等題.3、A【解析】
利用分段函數(shù)的性質(zhì)逐步求解即可得答案.【詳解】,;;故選:.【點睛】本題考查了函數(shù)值的求法,考查對數(shù)的運算和對數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題,解題時注意函數(shù)性質(zhì)的合理應(yīng)用.4、D【解析】
根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎(chǔ)題.5、A【解析】
根據(jù)向量平行的坐標(biāo)表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標(biāo)運算,屬于容易題.6、B【解析】
計算,故,解得答案.【詳解】當(dāng)時,,即,且.故,,故.故選:.【點睛】本題考查了數(shù)列的相關(guān)計算,意在考查學(xué)生的計算能力和對于數(shù)列公式方法的綜合應(yīng)用.7、B【解析】
將所有可能的情況全部枚舉出來,再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.8、B【解析】由題意可得c=,設(shè)右焦點為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點睛:橢圓的定義:到兩定點距離之和為常數(shù)的點的軌跡,當(dāng)和大于兩定點間的距離時,軌跡是橢圓,當(dāng)和等于兩定點間的距離時,軌跡是線段(兩定點間的連線段),當(dāng)和小于兩定點間的距離時,軌跡不存在.9、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標(biāo)運算,考查向量垂直的坐標(biāo)運算,屬于基礎(chǔ)題.10、B【解析】
考慮當(dāng)時,有兩個不同的實數(shù)解,令,則有兩個不同的零點,利用導(dǎo)數(shù)和零點存在定理可得實數(shù)的取值范圍.【詳解】因為的圖象上關(guān)于原點對稱的點有2對,所以時,有兩個不同的實數(shù)解.令,則在有兩個不同的零點.又,當(dāng)時,,故在上為增函數(shù),在上至多一個零點,舍.當(dāng)時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因為有兩個不同的零點,所以,解得.又當(dāng)時,且,故在上存在一個零點.又,其中.令,則,當(dāng)時,,故為減函數(shù),所以即.因為,所以在上也存在一個零點.綜上,當(dāng)時,有兩個不同的零點.故選:B.【點睛】本題考查函數(shù)的零點,一般地,較為復(fù)雜的函數(shù)的零點,必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點存在定理說明零點的存在性,本題屬于難題.11、C【解析】
由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.12、B【解析】
根據(jù)分段函數(shù),分當(dāng),,將問題轉(zhuǎn)化為的零點問題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時,,令,在是增函數(shù),時,有一個零點,當(dāng)時,,令當(dāng)時,,在上單調(diào)遞增,當(dāng)時,,在上單調(diào)遞減,所以當(dāng)時,取得最大值,因為在上有3個零點,所以當(dāng)時,有2個零點,如圖所示:所以實數(shù)的取值范圍為綜上可得實數(shù)的取值范圍為,故選:B【點睛】本題主要考查了函數(shù)的零點問題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、-15【解析】
是等差數(shù)列,則有,可得的值,再由可得,計算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【點睛】本題考查等差數(shù)列的性質(zhì),也可以由已知條件求出和公差,再計算.14、【解析】
試題分析:因為正三棱柱的底面邊長為,側(cè)棱長為為中點,所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為.考點:幾何體的體積的計算.15、【解析】
由題意得出展開式中共有11項,;再令求得展開式中各項的系數(shù)和.【詳解】由的展開式中只有第六項的二項式系數(shù)最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數(shù)和是:.故答案為:1.【點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數(shù)和的求法,屬于基礎(chǔ)題.16、【解析】
變換,根據(jù)二項式定理計算得到答案.【詳解】的展開式的通項為:,,取和,計算得到系數(shù)為:.故答案為:.【點睛】本題考查了二項式定理,意在考查學(xué)生的計算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是為定值,的橫坐標(biāo)為定值【解析】
(1)根據(jù)“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結(jié)合橢圓離心率以及,求得,由此求得橢圓方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,化簡后寫出根與系數(shù)關(guān)系.求得直線的方程,并求得兩直線交點的橫坐標(biāo),結(jié)合根與系數(shù)關(guān)系進行化簡,求得的橫坐標(biāo)為定值.【詳解】(1)依題意可知,解得,即;而,即,結(jié)合解得,,因此橢圓方程為(2)由題意得,左焦點,設(shè)直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯(lián)系方程,解得,又因為.所以.所以的橫坐標(biāo)為定值.【點睛】本小題主要考查根據(jù)橢圓離心率求橢圓方程,考查直線和橢圓的位置關(guān)系,考查直線和直線交點坐標(biāo)的求法,考查運算求解能力,屬于中檔題.18、(1)證明見解析;(2).【解析】
(1)先求出,又由可判斷出在上單調(diào)遞減,故,令,記,利用導(dǎo)數(shù)求出的最小值即可;(2)由在上不單調(diào)轉(zhuǎn)化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調(diào)遞減,令,記,則在上單調(diào)遞增;,在上單調(diào)遞增;,(2),,在上不單調(diào),在上有正有負,在上有解,,,恒成立,記,則,記,,在上單調(diào)增,在上單調(diào)減.于是知(i)當(dāng)即時,恒成立,在上單調(diào)增,,,.(ii)當(dāng)時,,故不滿足題意.綜上所述,【點睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,考查了分類討論,轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運算求解能力.19、(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數(shù)可得直線的直角坐標(biāo)系方程,由可得曲線的直角坐標(biāo)方程;(2)將(為參數(shù))代入曲線的方程得:,,利用韋達定理求解即可.試題解析:(1),曲線,(2)將(為參數(shù))代入曲線的方程得:.所以.所以.20、(1)見解析,(2)【解析】
(1)根據(jù)等差中項的定義得,然后構(gòu)造新等比數(shù)列,寫出的通項即可求(2)根據(jù)(1)的結(jié)果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數(shù)列是以為首項,2為公比的等比數(shù)列.即有,所以.(2)由(1)知,數(shù)列的通項為:,故.【點睛】考查等差中項的定義和分組求和的方法;中檔題.21、(1)分布列見解析;(2)①;②,.【解析】
(1)經(jīng)過1輪投球,甲的得分的取值為,記一輪投球,甲投中為事件,乙投中為事件,相互獨立,計算概率后可得分布列;(2)由(1)得,由兩輪的得分可計算出,計算時可先計算出經(jīng)過2輪后甲的得分的分布列(的取值為),然后結(jié)合的分布列和的分布可計算,由,代入,得兩個方程,解得,從而得到數(shù)列的遞推式,變形后得是等比數(shù)列,由等比數(shù)列通項公式得,然后用累加法可求得.【詳解】(1)記一輪投球,甲命中為事件,乙命中為事件,相互獨立,由題意,,甲的得分的取值為,,,,∴的分布列為:-101(2)由(1),,同理,經(jīng)過2輪投球,甲的得分取值:記,,,則,,,,由此得甲的得分的分布列為:-2-1012∴,∵,,∴,,∴,代入得:,∴,∴數(shù)列是等比數(shù)列,公比為,首項為,∴.∴.【點睛】本題考查隨機變量的概率分布列,考查相互獨立事件同時發(fā)生的概率,考查由數(shù)列的遞推式求通項公式,考查學(xué)生的轉(zhuǎn)化與化歸思想,本題難點在于求概率分布列,特別是經(jīng)過2輪投球后甲的得分的概率分布列,這里可用列舉法寫出各種可能,然后由獨立事件的概率公式計算出概率.22、(1)時,有一個零點;當(dāng)且時,有兩個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度畜牧產(chǎn)業(yè)扶貧項目合作買賣合同4篇
- 二零二五餐飲業(yè)冷鏈物流技術(shù)服務(wù)合同3篇
- 二零二五年度船舶動力系統(tǒng)船員勞務(wù)合同范本(全新修訂)4篇
- 2025年度汽車租賃公司股份增資擴股合同4篇
- 2025年度打印機設(shè)備租賃與節(jié)能改造合同2篇
- 二零二四年度藝術(shù)品抵押貸款執(zhí)行合同范本6篇
- 二零二五年度房產(chǎn)買賣協(xié)議書(含房屋租賃權(quán)處理)
- 二零二五版馬鈴薯種植基地與電商平臺合作銷售合同4篇
- 二零二五年度停薪留職員工心理健康輔導(dǎo)及咨詢合同
- 2025版學(xué)生入學(xué)協(xié)議書(含綜合素質(zhì)評價與認證)3篇
- 乳腺癌的綜合治療及進展
- 【大學(xué)課件】基于BGP協(xié)議的IP黑名單分發(fā)系統(tǒng)
- 2025年八省聯(lián)考高考語文試題真題解讀及答案詳解課件
- 信息安全意識培訓(xùn)課件
- 2024年山東省泰安市初中學(xué)業(yè)水平生物試題含答案
- 美的MBS精益管理體系
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 2024安全員知識考試題(全優(yōu))
- 2024年衛(wèi)生資格(中初級)-中醫(yī)外科學(xué)主治醫(yī)師考試近5年真題集錦(頻考類試題)帶答案
- 中國大百科全書(第二版全32冊)08
- 第六單元 中華民族的抗日戰(zhàn)爭 教學(xué)設(shè)計 2024-2025學(xué)年統(tǒng)編版八年級歷史上冊
評論
0/150
提交評論