重慶市綦江南州中學(xué)2025屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第1頁(yè)
重慶市綦江南州中學(xué)2025屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第2頁(yè)
重慶市綦江南州中學(xué)2025屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第3頁(yè)
重慶市綦江南州中學(xué)2025屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第4頁(yè)
重慶市綦江南州中學(xué)2025屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶市綦江南州中學(xué)2025屆高考?jí)狠S卷數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù),則的虛部是()A. B. C. D.12.已知等差數(shù)列的前項(xiàng)和為,若,則等差數(shù)列公差()A.2 B. C.3 D.43.公比為2的等比數(shù)列中存在兩項(xiàng),,滿足,則的最小值為()A. B. C. D.4.已知等比數(shù)列滿足,,則()A. B. C. D.5.波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒(méi)有插足的余地.他證明過(guò)這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0,且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長(zhǎng)軸端點(diǎn),C,D為橢圓的短軸端點(diǎn),動(dòng)點(diǎn)M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.6.的展開(kāi)式中的一次項(xiàng)系數(shù)為()A. B. C. D.7.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.8.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.9.,則與位置關(guān)系是()A.平行 B.異面C.相交 D.平行或異面或相交10.已知m,n是兩條不同的直線,,是兩個(gè)不同的平面,給出四個(gè)命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④11.已知是邊長(zhǎng)為1的等邊三角形,點(diǎn),分別是邊,的中點(diǎn),連接并延長(zhǎng)到點(diǎn),使得,則的值為()A. B. C. D.12.在滿足,的實(shí)數(shù)對(duì)中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知是等比數(shù)列,若,,且∥,則______.14.已知,,且,若恒成立,則實(shí)數(shù)的取值范圍是____.15.若展開(kāi)式的二項(xiàng)式系數(shù)之和為64,則展開(kāi)式各項(xiàng)系數(shù)和為_(kāi)_________.16.如圖梯形為直角梯形,,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內(nèi)投入一質(zhì)點(diǎn),質(zhì)點(diǎn)落入陰影部分的概率是_____________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.(1)求直線和圓的普通方程;(2)已知直線上一點(diǎn),若直線與圓交于不同兩點(diǎn),求的取值范圍.18.(12分)己知點(diǎn),分別是橢圓的上頂點(diǎn)和左焦點(diǎn),若與圓相切于點(diǎn),且點(diǎn)是線段靠近點(diǎn)的三等分點(diǎn).求橢圓的標(biāo)準(zhǔn)方程;直線與橢圓只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過(guò)坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于,兩點(diǎn),求面積的取值范圍.19.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負(fù)半軸的公共點(diǎn)分別為、,又記與在第一、第四象限的公共點(diǎn)分別為、.(1)若,且恰為的左焦點(diǎn),求的兩條漸近線的方程;(2)若,且,求實(shí)數(shù)的值;(3)若恰為的左焦點(diǎn),求證:在軸上不存在這樣的點(diǎn),使得.20.(12分)已知.(1)當(dāng)時(shí),求不等式的解集;(2)若,,證明:.21.(12分)已知函數(shù)()在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).(1)求實(shí)數(shù)的取值范圍;(2)若有兩個(gè)不同的極值點(diǎn),,且,若不等式恒成立.求正實(shí)數(shù)的取值范圍.22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線交曲線于兩點(diǎn),為中點(diǎn).(1)求曲線的直角坐標(biāo)方程和點(diǎn)的軌跡的極坐標(biāo)方程;(2)若,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

化簡(jiǎn)復(fù)數(shù),分子分母同時(shí)乘以,進(jìn)而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點(diǎn)睛】本小題主要考查復(fù)數(shù)的乘法、除法運(yùn)算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.2、C【解析】

根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點(diǎn)睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.3、D【解析】

根據(jù)已知條件和等比數(shù)列的通項(xiàng)公式,求出關(guān)系,即可求解.【詳解】,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式,注意為正整數(shù),如用基本不等式要注意能否取到等號(hào),屬于基礎(chǔ)題.4、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.5、D【解析】

求得定點(diǎn)M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動(dòng)點(diǎn)M滿足=2,則=2,化簡(jiǎn)得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點(diǎn)睛】本題考查了橢圓離心率,動(dòng)點(diǎn)軌跡,屬于中檔題.6、B【解析】

根據(jù)多項(xiàng)式乘法法則得出的一次項(xiàng)系數(shù),然后由等差數(shù)列的前項(xiàng)和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開(kāi)式中的一次項(xiàng)系數(shù)為.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,應(yīng)用多項(xiàng)式乘法法則可得展開(kāi)式中某項(xiàng)系數(shù).同時(shí)本題考查了組合數(shù)公式.7、A【解析】

畫出約束條件的可行域,利用目標(biāo)函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因?yàn)榈淖畲笾禐?,所以在點(diǎn)處取得最大值,則,即.故選:A【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過(guò)數(shù)形結(jié)合是解決本題的關(guān)鍵.8、D【解析】

設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點(diǎn)睛】本題考查向量投影的計(jì)算,同時(shí)也考查利用向量的模計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.9、D【解析】結(jié)合圖(1),(2),(3)所示的情況,可得a與b的關(guān)系分別是平行、異面或相交.選D.10、D【解析】

根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對(duì)于①,若,,,,兩平面相交,但不一定垂直,故①錯(cuò)誤;對(duì)于②,若,,則,故②正確;對(duì)于③,若,,,當(dāng),則與不平行,故③錯(cuò)誤;對(duì)于④,若,,,則,故④正確;故選:D【點(diǎn)睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.11、D【解析】

設(shè),,作為一個(gè)基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.12、A【解析】

由題可知:,且可得,構(gòu)造函數(shù)求導(dǎo),通過(guò)導(dǎo)函數(shù)求出的單調(diào)性,結(jié)合圖像得出,即得出,從而得出的最大值.【詳解】因?yàn)?,則,即整理得,令,設(shè),則,令,則,令,則,故在上單調(diào)遞增,在上單調(diào)遞減,則,因?yàn)?,,由題可知:時(shí),則,所以,所以,當(dāng)無(wú)限接近時(shí),滿足條件,所以,所以要使得故當(dāng)時(shí),可有,故,即,所以:最大值為5.故選:A.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求函數(shù)單調(diào)性、極值和最值,以及運(yùn)用構(gòu)造函數(shù)法和放縮法,同時(shí)考查轉(zhuǎn)化思想和解題能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】若,,且∥,則,由是等比數(shù)列,可知公比為..故答案為.14、(-4,2)【解析】試題分析:因?yàn)楫?dāng)且僅當(dāng)時(shí)取等號(hào),所以考點(diǎn):基本不等式求最值15、1【解析】

由題意得展開(kāi)式的二項(xiàng)式系數(shù)之和求出的值,然后再計(jì)算展開(kāi)式各項(xiàng)系數(shù)的和.【詳解】由題意展開(kāi)式的二項(xiàng)式系數(shù)之和為,即,故,令,則展開(kāi)式各項(xiàng)系數(shù)的和為.故答案為:【點(diǎn)睛】本題考查了二項(xiàng)展開(kāi)式的二項(xiàng)式系數(shù)和項(xiàng)的系數(shù)和問(wèn)題,需要運(yùn)用定義加以區(qū)分,并能夠運(yùn)用公式和賦值法求解結(jié)果,需要掌握解題方法.16、【解析】

聯(lián)立直線與拋物線方程求出交點(diǎn)坐標(biāo),再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據(jù)幾何概型的概率公式計(jì)算可得;【詳解】解:聯(lián)立解得或,即,,,,,故答案為:【點(diǎn)睛】本題考查幾何概型的概率公式的應(yīng)用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)【解析】分析:(1)用代入法消參數(shù)可得直線的普通方程,由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,其中參數(shù)的絕對(duì)值表示直線上對(duì)應(yīng)點(diǎn)到的距離,因此有,,直接由韋達(dá)定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關(guān)系,由此可求得的取值范圍.詳解:(1)直線的參數(shù)方程為,普通方程為,將代入圓的極坐標(biāo)方程中,可得圓的普通方程為,(2)解:直線的參數(shù)方程為代入圓的方程為可得:(*),且由題意,,.因?yàn)榉匠蹋?)有兩個(gè)不同的實(shí)根,所以,即,又,所以.因?yàn)?,所以所?點(diǎn)睛:(1)參數(shù)方程化為普通方程,一般用消參數(shù)法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標(biāo)方程與直角坐標(biāo)方程互化一般利用公式;(3)過(guò)的直線的參數(shù)方程為(為參數(shù))中參數(shù)具有幾何意義:直線上任一點(diǎn)對(duì)應(yīng)參數(shù),則.18、;.【解析】

連接,由三角形相似得,,進(jìn)而得出,,寫出橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),,解得,,因?yàn)辄c(diǎn)在第二象限,所以,,所以,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.【詳解】解:連接,由可得,,,橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),所以,即,解得,,即點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)在第二象限,所以,,所以,所以點(diǎn)的坐標(biāo)為,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,當(dāng)且僅當(dāng),即時(shí),有最大值,所以,即面積的取值范圍為.【點(diǎn)睛】本題考查直線和橢圓位置關(guān)系的應(yīng)用,利用基本不等式,屬于難題.19、(1);(2);(2)見(jiàn)解析.【解析】

(1)由圓的方程求出點(diǎn)坐標(biāo),得雙曲線的,再計(jì)算出后可得漸近線方程;(2)設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標(biāo),計(jì)算;(3)由已知得,設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點(diǎn)不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,設(shè),由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設(shè)由得:,,由得,解得,,,所以,,,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),等號(hào)成立,∴軸上不存在點(diǎn),使得.【點(diǎn)睛】本題考查求漸近線方程,考查圓與雙曲線相交問(wèn)題.考查向量的加法運(yùn)算,本題對(duì)學(xué)生的運(yùn)算求解能力要求較高,解題時(shí)都是直接求出交點(diǎn)坐標(biāo).難度較大,屬于困難題.20、(1)(2)見(jiàn)證明【解析】

(1)利用零點(diǎn)分段法討論去掉絕對(duì)值求解;(2)利用絕對(duì)值不等式的性質(zhì)進(jìn)行證明.【詳解】(1)解:當(dāng)時(shí),不等式可化為.當(dāng)時(shí),,,所以;當(dāng)時(shí),,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【點(diǎn)睛】本題主要考查含有絕對(duì)值不等式問(wèn)題的求解,含有絕對(duì)值不等式的解法一般是使用零點(diǎn)分段討論法.21、(1);(2).【解析】

(1)求導(dǎo)得到有兩個(gè)不相等實(shí)根,令,計(jì)算函數(shù)單調(diào)區(qū)間得到值域,得到答案.(2),是方程的兩根,故,化簡(jiǎn)得到,設(shè)函數(shù),討論范圍,計(jì)算最值得到答案.【詳解】(1)由題可知有兩個(gè)不相等的實(shí)根,即:有兩個(gè)不相等實(shí)根,令,,,,;,,故在上單增,在上單減,∴.又,時(shí),;時(shí),,∴,即.(2)由(1)知,,是方程的兩根,∴,則因?yàn)樵趩螠p,∴,又,∴即,兩邊取對(duì)數(shù),并整理得:對(duì)恒成立,設(shè),,,當(dāng)時(shí),對(duì)恒成立,∴在上單增,故恒成立,符合題意;當(dāng)時(shí),,時(shí),∴在上單減,,不符合題意.綜上,.【點(diǎn)睛】本題考查了根據(jù)極值點(diǎn)求參數(shù),恒成立問(wèn)題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.22、(1),;(2)或【解析】

(1)根據(jù)曲線的參數(shù)方程消

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論