版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題21雙曲線【考點(diǎn)專題】1.雙曲線的概念平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的差的絕對(duì)值等于常數(shù)(小于|F1F2|)的點(diǎn)的軌跡叫做雙曲線.這兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),兩焦點(diǎn)間的距離叫做雙曲線的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c>2a,其中a,c為常數(shù)且a>0,c>0.2.雙曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì)標(biāo)準(zhǔn)方程eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)eq\f(y2,a2)-eq\f(x2,b2)=1(a>0,b>0)圖形性質(zhì)范圍x≥a或x≤-a,y∈Rx∈R,y≤-a或y≥a對(duì)稱性對(duì)稱軸:坐標(biāo)軸對(duì)稱中心:原點(diǎn)頂點(diǎn)A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)漸近線y=±eq\f(b,a)xy=±eq\f(a,b)x離心率e=eq\f(c,a),e∈(1,+∞),其中c=eq\r(a2+b2)實(shí)虛軸線段A1A2叫做雙曲線的實(shí)軸,它的長(zhǎng)|A1A2|=2a,線段B1B2叫做雙曲線的虛軸,它的長(zhǎng)|B1B2|=2b;a叫做雙曲線的實(shí)半軸長(zhǎng),b叫做雙曲線的虛半軸長(zhǎng)a,b,c的關(guān)系c2=a2+b2(c>a>0,c>b>0)【方法技巧】離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:直接求出SKIPIF1<0,從而求出SKIPIF1<0;構(gòu)造SKIPIF1<0的齊次式,求出SKIPIF1<0;采用離心率的定義以及圓錐曲線的定義來求解;根據(jù)圓錐曲線的統(tǒng)一定義求解.2.軌跡問題一般方法有三種:定義法,相關(guān)點(diǎn)法.定義法:(1)判斷動(dòng)點(diǎn)的運(yùn)動(dòng)軌跡是否滿足某種曲線的定義;(2)設(shè)標(biāo)準(zhǔn)方程,求方程中的基本量(3)求軌跡方程相關(guān)點(diǎn)法:(1)分析題目:與動(dòng)點(diǎn)SKIPIF1<0相關(guān)的點(diǎn)SKIPIF1<0在已知曲線上;(2)尋求關(guān)系式,SKIPIF1<0,SKIPIF1<0;(3)將SKIPIF1<0,SKIPIF1<0代入已知曲線方程;(4)整理關(guān)于SKIPIF1<0,SKIPIF1<0的關(guān)系式得到SKIPIF1<0M的軌跡方程【核心題型】題型一:待定系數(shù)法求雙曲線方程1.(2023春·貴州·高三校聯(lián)考)已知雙曲線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0的左支相交于SKIPIF1<0兩點(diǎn),過SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0的右支相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若四邊形SKIPIF1<0為平行四邊形,以SKIPIF1<0為直徑的圓過SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022秋·天津?yàn)I海新·高三天津市濱海新區(qū)塘沽第一中學(xué)??计谀┮阎p曲線SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的兩條漸近線均和圓SKIPIF1<0:SKIPIF1<0相切,且雙曲線的右焦點(diǎn)為圓SKIPIF1<0的圓心,則該雙曲線的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022秋·貴州貴陽(yáng)·高二校聯(lián)考階段練習(xí))已知雙曲線SKIPIF1<0SKIPIF1<0,以原點(diǎn)為圓心,雙曲線的實(shí)半軸長(zhǎng)為半徑的圓與雙曲線的兩條漸近線相交于A、B、C、D四點(diǎn),四邊形ABCD的面積為2b,則雙曲線方程為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型二:相同漸進(jìn)性求雙曲線方程4.(2023·全國(guó)·高三專題練習(xí))已知雙曲線C的漸近線方程為SKIPIF1<0,且焦距為10,則雙曲線C的標(biāo)準(zhǔn)方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<05.(2020·河南·高三校聯(lián)考階段練習(xí))已知雙曲線SKIPIF1<0與SKIPIF1<0的漸近線相同,則曲線SKIPIF1<0的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2018秋·安徽池州·高三統(tǒng)考期末)雙曲線SKIPIF1<0上一點(diǎn)SKIPIF1<0關(guān)于一條漸近線SKIPIF1<0的對(duì)稱點(diǎn)恰為左焦點(diǎn)SKIPIF1<0,則該雙曲線的標(biāo)準(zhǔn)方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型三:直接法求離心率7.(2023·陜西榆林·統(tǒng)考二模)已知雙曲線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的左、右焦點(diǎn)分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0上的一點(diǎn),且SKIPIF1<0,若SKIPIF1<0,則雙曲線SKIPIF1<0的離心率是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2023·河南·統(tǒng)考模擬預(yù)測(cè))已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0的一條漸近線上的點(diǎn),且線段SKIPIF1<0的中點(diǎn)SKIPIF1<0在另一條漸近線上.若SKIPIF1<0,則雙曲線SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<09.(2023·新疆·統(tǒng)考一模)已知SKIPIF1<0為雙曲線SKIPIF1<0的左焦點(diǎn),過點(diǎn)SKIPIF1<0的直線與圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn)(SKIPIF1<0在SKIPIF1<0之間),與雙曲線SKIPIF1<0在第一象限的交點(diǎn)為SKIPIF1<0為坐標(biāo)原點(diǎn),若SKIPIF1<0,則雙曲線SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型四:構(gòu)造齊次方程求離心率10.(2023·內(nèi)蒙古呼和浩特·統(tǒng)考一模)過雙曲線SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的左焦點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線,切點(diǎn)為SKIPIF1<0,直線SKIPIF1<0交雙曲線右支于點(diǎn)SKIPIF1<0,若SKIPIF1<0,則雙曲線的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<011.(2023·河南開封·開封高中??寄M預(yù)測(cè))設(shè)SKIPIF1<0分別是雙曲線SKIPIF1<0的左?右焦點(diǎn),過SKIPIF1<0作SKIPIF1<0的一條漸近線的垂線,垂足為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.(2023·河南洛陽(yáng)·洛陽(yáng)市第三中學(xué)校聯(lián)考一模)已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,A是雙曲線C的左頂點(diǎn),以SKIPIF1<0為直徑的圓與雙曲線C的一條漸近線交于P,Q兩點(diǎn),且SKIPIF1<0,則雙曲線C的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2題型五:漸進(jìn)性的綜合問題13.(2023·寧夏銀川·六盤山高級(jí)中學(xué)校考一模)已知雙曲線SKIPIF1<0,直線SKIPIF1<0過雙曲線SKIPIF1<0的右焦點(diǎn)且斜率為SKIPIF1<0,直線SKIPIF1<0與雙曲線SKIPIF1<0的兩條漸近線分別交于SKIPIF1<0兩點(diǎn)(SKIPIF1<0點(diǎn)在SKIPIF1<0軸下方),且SKIPIF1<0,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<014.(2021·陜西榆林·陜西省神木中學(xué)??寄M預(yù)測(cè))已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0的右支上,且SKIPIF1<0,雙曲線SKIPIF1<0的一條漸近線方程為SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<015.(2023春·四川成都·高三樹德中學(xué)??奸_學(xué)考試)已知雙曲線SKIPIF1<0的右焦點(diǎn)為F,兩條漸近線分別為SKIPIF1<0,過F且與SKIPIF1<0平行的直線與雙曲線C及直線SKIPIF1<0依次交于點(diǎn)B,D,點(diǎn)B恰好平分線段SKIPIF1<0,則雙曲線C的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2題型六:利用自變量求離心率范圍問題16.(2023春·浙江溫州·高三統(tǒng)考開學(xué)考試)直線l與雙曲線SKIPIF1<0的左,右兩支分別交于點(diǎn)A,B,與雙曲線的兩條漸近線分別交于點(diǎn)C,D(A,C,D,B從左到右依次排列),若SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,則雙曲線的離心率的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<017.(2022·全國(guó)·高三專題練習(xí))已知點(diǎn)SKIPIF1<0為雙曲線SKIPIF1<0的右焦點(diǎn),直線SKIPIF1<0,SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則該雙曲線的離心率的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<018.(2020·全國(guó)·高三專題練習(xí))雙曲線SKIPIF1<0上一點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B,F(xiàn)為其右焦點(diǎn),若AF⊥BF,設(shè)∠ABF=θ,且SKIPIF1<0,則該雙曲線的離心率的取值范圍為(
)A.(1,SKIPIF1<0+1] B.SKIPIF1<0C.SKIPIF1<0 D.[SKIPIF1<0,+∞)題型七:雙曲線的綜合問題19.(2023·廣東江門·統(tǒng)考一模)已知M是平面直角坐標(biāo)系內(nèi)的一個(gè)動(dòng)點(diǎn),直線SKIPIF1<0與直線SKIPIF1<0垂直,A為垂足且位于第一象限,直線SKIPIF1<0與直線SKIPIF1<0垂直,B為垂足且位于第四象限,四邊形SKIPIF1<0(O為原點(diǎn))的面積為8,動(dòng)點(diǎn)M的軌跡為C.(1)求軌跡C的方程;(2)已知SKIPIF1<0是軌跡C上一點(diǎn),直線l交軌跡C于P,Q兩點(diǎn),直線SKIPIF1<0,SKIPIF1<0的斜率之和為1,SKIPIF1<0,求SKIPIF1<0的面積.20.(2023·山西晉中·統(tǒng)考二模)已知雙曲線C:SKIPIF1<0的離心率為SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線上.(1)求雙曲線C的方程;(2)若A,B為雙曲線的左、右頂點(diǎn),SKIPIF1<0,若MA與C的另一交點(diǎn)為P,MB與C的另一交點(diǎn)為Q(P與A,Q與B均不重合)求證:直線PQ過定點(diǎn),并求出定點(diǎn)坐標(biāo).21.(2023·安徽安慶·??家荒#┰谥苯亲鴺?biāo)平面中,SKIPIF1<0的兩個(gè)頂點(diǎn)的坐標(biāo)分別為SKIPIF1<0,兩動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,向量SKIPIF1<0與SKIPIF1<0共線.(1)求SKIPIF1<0的頂點(diǎn)SKIPIF1<0的軌跡方程;(2)若過點(diǎn)SKIPIF1<0的直線與(1)的軌跡相交于SKIPIF1<0兩點(diǎn),求SKIPIF1<0的取值范圍.(3)若SKIPIF1<0為SKIPIF1<0點(diǎn)的軌跡在第一象限內(nèi)的任意一點(diǎn),則是否存在常數(shù)SKIPIF1<0,使得SKIPIF1<0恒成立?若存在,求出SKIPIF1<0的值;若不存在,請(qǐng)說明理由.【高考必刷】一、單選題22.(2023·陜西商洛·統(tǒng)考一模)已知雙曲線SKIPIF1<0的左頂點(diǎn)為A,右焦點(diǎn)為F,點(diǎn)M在雙曲線C上,且SKIPIF1<0,SKIPIF1<0,則雙曲線C的離心率為(
)A.2 B.3 C.SKIPIF1<0 D.SKIPIF1<023.(2023·河南焦作·統(tǒng)考模擬預(yù)測(cè))設(shè)雙曲線SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,若直線SKIPIF1<0與SKIPIF1<0的右支交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),且SKIPIF1<0為SKIPIF1<0的重心,則直線SKIPIF1<0斜率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<024.(2023·山東威?!そy(tǒng)考一模)已知雙曲線SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,M為C上一點(diǎn),M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為N,若SKIPIF1<0,且SKIPIF1<0,則C的漸近線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<025.(2023·重慶·統(tǒng)考二模)SKIPIF1<0是雙曲線SKIPIF1<0的左SKIPIF1<0右焦點(diǎn),點(diǎn)SKIPIF1<0為雙曲線SKIPIF1<0右支上一點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,滿足SKIPIF1<0,若SKIPIF1<0,則雙曲線SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<026.(2023·湖北·統(tǒng)考模擬預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0分別是雙曲線SKIPIF1<0的左、右焦點(diǎn),過SKIPIF1<0的直線分別交雙曲線左、右兩支于A,B兩點(diǎn),點(diǎn)C在x軸上,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,則雙曲線SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<027.(2023·江西贛州·統(tǒng)考一模)已知點(diǎn)SKIPIF1<0,雙曲線SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0的右支上運(yùn)動(dòng).當(dāng)SKIPIF1<0的周長(zhǎng)最小時(shí),SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<028.(2023·陜西·西安市西光中學(xué)校聯(lián)考一模)在xOy平面內(nèi),雙曲線SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過左頂點(diǎn)A且斜率為SKIPIF1<0的直線與漸近線在第一象限的交點(diǎn)為M,若SKIPIF1<0,則該雙曲線的離心率是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<029.(2023·河南·校聯(lián)考模擬預(yù)測(cè))設(shè)雙曲線SKIPIF1<0SKIPIF1<0SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,B為雙曲線E上在第一象限內(nèi)的點(diǎn),線段SKIPIF1<0與雙曲線E相交于另一點(diǎn)A,AB的中點(diǎn)為M,且SKIPIF1<0,若SKIPIF1<0,則雙曲線E的離心率為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0二、多選題30.(2023·湖南·模擬預(yù)測(cè))已知O為坐標(biāo)原點(diǎn),SKIPIF1<0,SKIPIF1<0分別是雙曲線E:SKIPIF1<0的左、右焦點(diǎn),P是雙曲線E的右支上一點(diǎn),若SKIPIF1<0,雙曲線E的離心率為SKIPIF1<0,則下列結(jié)論正確的是(
)A.雙曲線E的標(biāo)準(zhǔn)方程為SKIPIF1<0B.雙曲線E的漸近線方程為SKIPIF1<0C.點(diǎn)P到兩條漸近線的距離之積為SKIPIF1<0D.若直線SKIPIF1<0與雙曲線E的另一支交于點(diǎn)M,點(diǎn)N為PM的中點(diǎn),則SKIPIF1<031.(2023·全國(guó)·高三專題練習(xí))已知雙曲線SKIPIF1<0和圓SKIPIF1<0,則(
)A.雙曲線SKIPIF1<0的離心率為SKIPIF1<0B.雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),雙曲線SKIPIF1<0與圓SKIPIF1<0沒有公共點(diǎn)D.當(dāng)SKIPIF1<0時(shí),雙曲線SKIPIF1<0與圓SKIPIF1<0恰有兩個(gè)公共點(diǎn)32.(2023·全國(guó)·高三)已知SKIPIF1<0,SKIPIF1<0分別為雙曲線C:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的左、右焦點(diǎn),SKIPIF1<0的一條漸近線SKIPIF1<0的方程為SKIPIF1<0,且SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0在第一象限上的點(diǎn),點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的平分線SKIPIF1<0則下列正確的是(
)A.雙曲線的方程為SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.點(diǎn)SKIPIF1<0到SKIPIF1<0軸的距離為SKIPIF1<033.(2023·山東菏澤·統(tǒng)考一模)已知雙曲線SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0的左?右兩支分別交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),下列命題正確的有(
)A.當(dāng)點(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn)時(shí),直線SKIPIF1<0的斜率為SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0C.SKIPIF1<0D.若直線SKIPIF1<0的斜率為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0三、填空題34.(2023·內(nèi)蒙古呼和浩特·統(tǒng)考一模)拋物線SKIPIF1<0的焦點(diǎn)與雙曲線SKIPIF1<0的右焦點(diǎn)的連線交SKIPIF1<0于第一象限的點(diǎn)M,若SKIPIF1<0在點(diǎn)M處的切線平行于SKIPIF1<0的一條漸近線,則SKIPIF1<0__________.35.(2023·遼寧·校聯(lián)考一模)過雙曲線SKIPIF1<0焦點(diǎn)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)虛擬現(xiàn)實(shí)VR行業(yè)營(yíng)銷創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)指紋識(shí)別芯片行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)玩具行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)酒店行業(yè)開拓第二增長(zhǎng)曲線戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2024年汽車智能座艙投融資研究白皮書
- 織物強(qiáng)力標(biāo)準(zhǔn)
- 關(guān)于“臥室裝飾燈”的調(diào)研問卷
- 福建省2024屆高三下學(xué)期6月模擬英語(yǔ)試題
- 收購(gòu)某供水特許經(jīng)營(yíng)項(xiàng)目SPV公司股權(quán)項(xiàng)目可行性研究報(bào)告
- 甲流防控知識(shí)培訓(xùn)課件
- 嶺南師范學(xué)院《高等代數(shù)Ⅰ》2021-2022學(xué)年第一學(xué)期期末試卷
- 倉(cāng)庫(kù)負(fù)責(zé)人年終總結(jié)
- 安全環(huán)保職業(yè)健康法律法規(guī)清單2024年
- 語(yǔ)文版2024年六年級(jí)上冊(cè)語(yǔ)文文言文閱讀理解真題
- 公職人員入股經(jīng)商檢討書
- 2024年廣州市個(gè)人房屋租賃合同
- PDCA提高便秘患者腸鏡檢查腸道準(zhǔn)備合格率
- 蘇教版四年級(jí)上冊(cè)數(shù)學(xué)計(jì)算題大全1000道帶答案
- SLT 478-2021 水利數(shù)據(jù)庫(kù)表結(jié)構(gòu)及標(biāo)識(shí)符編制總則
- 【新教材】人教版(2024)七年級(jí)上冊(cè)英語(yǔ)Unit 6 A Day in the Life單元整體教學(xué)設(shè)計(jì)(4課時(shí))
- 云倉(cāng)存儲(chǔ)合同范本
評(píng)論
0/150
提交評(píng)論