版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A從出發(fā),繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一周,則點(diǎn)A不經(jīng)過(guò)()A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q2.如圖,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得△DBE,點(diǎn)C的對(duì)應(yīng)點(diǎn)E恰好落在AB延長(zhǎng)線上,連接AD.下列結(jié)論一定正確的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC3.下列計(jì)算正確的是()A.x4?x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=14.某公園有A、B、C、D四個(gè)入口,每個(gè)游客都是隨機(jī)從一個(gè)入口進(jìn)入公園,則甲、乙兩位游客恰好從同一個(gè)入口進(jìn)入公園的概率是()A. B. C. D.5.已知A、B兩地之間鐵路長(zhǎng)為450千米,動(dòng)車比火車每小時(shí)多行駛50千米,從A市到B市乘動(dòng)車比乘火車少用40分鐘,設(shè)動(dòng)車速度為每小時(shí)x千米,則可列方程為()A. B.C. D.6.下列算式的運(yùn)算結(jié)果正確的是()A.m3?m2=m6B.m5÷m3=m2(m≠0)C.(m﹣2)3=m﹣5D.m4﹣m2=m27.在平面直角坐標(biāo)系中,將點(diǎn)P(﹣4,2)繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,則其對(duì)應(yīng)點(diǎn)Q的坐標(biāo)為()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)8.如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),則點(diǎn)A1,C1的坐標(biāo)分別是()A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)9.如圖,正方形ABCD和正方形CEFG中,點(diǎn)D在CG上,BC=1,CE=3,CH┴AF與點(diǎn)H,那么CH的長(zhǎng)是()A. B. C. D.10.如果m的倒數(shù)是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣2018二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,⊙M的半徑為2,圓心M(3,4),點(diǎn)P是⊙M上的任意一點(diǎn),PA⊥PB,且PA、PB與x軸分別交于A、B兩點(diǎn),若點(diǎn)A、點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,則AB的最小值為_____.12.如圖所示,直線y=x+1(記為l1)與直線y=mx+n(記為l2)相交于點(diǎn)P(a,2),則關(guān)于x的不等式x+1≥mx+n的解集為__________.13.如圖,矩形ABCD,AB=2,BC=1,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得矩形AEFG,連接CG、EG,則∠CGE=________.14.比較大?。?_________(填<,>或=).15.地球上的海洋面積約為361000000km1,則科學(xué)記數(shù)法可表示為_______km1.16.計(jì)算的結(jié)果為_____.三、解答題(共8題,共72分)17.(8分)如圖所示,在?ABCD中,E是CD延長(zhǎng)線上的一點(diǎn),BE與AD交于點(diǎn)F,DE=CD.(1)求證:△ABF∽△CEB;(2)若△DEF的面積為2,求?ABCD的面積.18.(8分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點(diǎn)D是BC的中點(diǎn),點(diǎn)P是AB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),延長(zhǎng)PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當(dāng)AP的值為時(shí),四邊形PBEC是矩形;②當(dāng)AP的值為時(shí),四邊形PBEC是菱形.19.(8分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點(diǎn)D,過(guò)點(diǎn)D的直線交BC于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長(zhǎng);(3)如圖②,點(diǎn)M是弧AB的中點(diǎn),連結(jié)DM,交AB于點(diǎn)N.若tanA=12,求DN20.(8分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結(jié)AE、BF.求證:(1)AE=BF;(2)AE⊥BF.21.(8分)如圖,將矩形OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,B(8,6),點(diǎn)D是射線AO上的一點(diǎn),把△BAD沿直線BD折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′.(1)若點(diǎn)A′落在矩形的對(duì)角線OB上時(shí),OA′的長(zhǎng)=;(2)若點(diǎn)A′落在邊AB的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo);(3)若點(diǎn)A′落在邊AO的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可).22.(10分)如圖所示,拋物線y=x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).求拋物線的函數(shù)解析式;點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);在第二問(wèn)的條件下,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).23.(12分)已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=1.(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;(2)當(dāng)方程有一個(gè)根為1時(shí),求k的值.24.為進(jìn)一步深化基教育課程改革,構(gòu)建符合素質(zhì)教育要求的學(xué)校課程體系,某學(xué)校自主開發(fā)了A書法、B閱讀,C足球,D器樂(lè)四門校本選修課程供學(xué)生選擇,每門課程被選到的機(jī)會(huì)均等.學(xué)生小紅計(jì)劃選修兩門課程,請(qǐng)寫出所有可能的選法;若學(xué)生小明和小剛各計(jì)劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,逐一判斷即可.【詳解】解:連接OA、OM、ON、OP,根據(jù)旋轉(zhuǎn)的性質(zhì),點(diǎn)A的對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離與OA的長(zhǎng)度應(yīng)相等根據(jù)網(wǎng)格線和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴則點(diǎn)A不經(jīng)過(guò)點(diǎn)P故選C.【點(diǎn)睛】此題考查的是旋轉(zhuǎn)的性質(zhì)和勾股定理,掌握旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等和用勾股定理求線段的長(zhǎng)是解決此題的關(guān)鍵.2、C【解析】根據(jù)旋轉(zhuǎn)的性質(zhì)得,∠ABD=∠CBE=60°,∠E=∠C,則△ABD為等邊三角形,即AD=AB=BD,得∠ADB=60°因?yàn)椤螦BD=∠CBE=60°,則∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故選C.3、D【解析】試題分析:x4x4=x8(同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算術(shù)平方根取正號(hào));(a6)考點(diǎn):1、冪的運(yùn)算;2、完全平方公式;3、算術(shù)平方根.4、B【解析】
畫樹狀圖列出所有等可能結(jié)果,從中確定出甲、乙兩位游客恰好從同一個(gè)入口進(jìn)入公園的結(jié)果數(shù),再利用概率公式計(jì)算可得.【詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結(jié)果,其中甲、乙兩位游客恰好從同一個(gè)入口進(jìn)入公園的結(jié)果有4種,所以甲、乙兩位游客恰好從同一個(gè)入口進(jìn)入公園的概率為=,故選B.【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.5、D【解析】解:設(shè)動(dòng)車速度為每小時(shí)x千米,則可列方程為:﹣=.故選D.6、B【解析】
直接利用同底數(shù)冪的除法運(yùn)算法則以及合并同類項(xiàng)法則、積的乘方運(yùn)算法則分別化簡(jiǎn)得出答案.【詳解】A、m3?m2=m5,故此選項(xiàng)錯(cuò)誤;B、m5÷m3=m2(m≠0),故此選項(xiàng)正確;C、(m-2)3=m-6,故此選項(xiàng)錯(cuò)誤;D、m4-m2,無(wú)法計(jì)算,故此選項(xiàng)錯(cuò)誤;故選:B.【點(diǎn)睛】此題主要考查了同底數(shù)冪的除法運(yùn)算以及合并同類項(xiàng)法則、積的乘方運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.7、A【解析】
首先求出∠MPO=∠QON,利用AAS證明△PMO≌△ONQ,即可得到PM=ON,OM=QN,進(jìn)而求出Q點(diǎn)坐標(biāo).【詳解】作圖如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P點(diǎn)坐標(biāo)為(﹣4,2),∴Q點(diǎn)坐標(biāo)為(2,4),故選A.【點(diǎn)睛】此題主要考查了旋轉(zhuǎn)的性質(zhì),以及全等三角形的判定和性質(zhì),關(guān)鍵是掌握旋轉(zhuǎn)后對(duì)應(yīng)線段相等.8、A【解析】分析:根據(jù)B點(diǎn)的變化,確定平移的規(guī)律,將△ABC向右移5個(gè)單位、上移1個(gè)單位,然后確定A、C平移后的坐標(biāo)即可.詳解:由點(diǎn)B(﹣4,1)的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)是(1,2)知,需將△ABC向右移5個(gè)單位、上移1個(gè)單位,則點(diǎn)A(﹣1,3)的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(4,4)、點(diǎn)C(﹣2,1)的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為(3,2),故選A.點(diǎn)睛:此題主要考查了平面直角坐標(biāo)系中的平移,關(guān)鍵是根據(jù)已知點(diǎn)的平移變化總結(jié)出平移的規(guī)律.9、D【解析】
連接AC、CF,根據(jù)正方形性質(zhì)求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長(zhǎng).【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點(diǎn)睛】本題考查了正方形的性質(zhì)、勾股定理及直角三角形的面積,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.10、A【解析】
因?yàn)閮蓚€(gè)數(shù)相乘之積為1,則這兩個(gè)數(shù)互為倒數(shù),如果m的倒數(shù)是﹣1,則m=-1,然后再代入m2018計(jì)算即可.【詳解】因?yàn)閙的倒數(shù)是﹣1,所以m=-1,所以m2018=(-1)2018=1,故選A.【點(diǎn)睛】本題主要考查倒數(shù)的概念和乘方運(yùn)算,解決本題的關(guān)鍵是要熟練掌握倒數(shù)的概念和乘方運(yùn)算法則.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、6【解析】
點(diǎn)P在以O(shè)為圓心OA為半徑的圓上,P是兩個(gè)圓的交點(diǎn),當(dāng)⊙O與⊙M外切時(shí),AB最小,根據(jù)條件求出AO即可求解;【詳解】解:點(diǎn)P在以O(shè)為圓心OA為半徑的圓上,∴P是兩個(gè)圓的交點(diǎn),當(dāng)⊙O與⊙M外切時(shí),AB最小,∵⊙M的半徑為2,圓心M(3,4),∴PM=5,∴OA=3,∴AB=6,故答案為6;【點(diǎn)睛】本題考查圓與圓的位置關(guān)系;能夠?qū)?wèn)題轉(zhuǎn)化為兩圓外切時(shí)AB最小是解題的關(guān)鍵.12、x≥1【解析】
把y=2代入y=x+1,得x=1,∴點(diǎn)P的坐標(biāo)為(1,2),根據(jù)圖象可以知道當(dāng)x≥1時(shí),y=x+1的函數(shù)值不小于y=mx+n相應(yīng)的函數(shù)值,因而不等式x+1≥mx+n的解集是:x≥1,故答案為x≥1.【點(diǎn)睛】本題考查了一次函數(shù)與不等式(組)的關(guān)系及數(shù)形結(jié)合思想的應(yīng)用.解決此類問(wèn)題關(guān)鍵是仔細(xì)觀察圖形,注意幾個(gè)關(guān)鍵點(diǎn)(交點(diǎn)、原點(diǎn)等),做到數(shù)形結(jié)合.13、45°【解析】試題解析:如圖,連接CE,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE和△GFE中∴△CDE≌△GFE(SAS),∴CE=GE,∠CED=∠GEF,故答案為14、<【解析】【分析】根據(jù)實(shí)數(shù)大小比較的方法進(jìn)行比較即可得答案.【詳解】∵32=9,9<10,∴3<,故答案為:<.【點(diǎn)睛】本題考查了實(shí)數(shù)大小的比較,熟練掌握實(shí)數(shù)大小比較的方法是解題的關(guān)鍵.15、3.61×2【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】將361000000用科學(xué)記數(shù)法表示為3.61×2.故答案為3.61×2.16、﹣2【解析】
根據(jù)分式的運(yùn)算法則即可得解.【詳解】原式===,故答案為:.【點(diǎn)睛】本題主要考查了同分母的分式減法,熟練掌握相關(guān)計(jì)算法則是解決本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)見(jiàn)解析;(2)16【解析】試題分析:(1)要證△ABF∽△CEB,需找出兩組對(duì)應(yīng)角相等;已知了平行四邊形的對(duì)角相等,再利用AB∥CD,可得一對(duì)內(nèi)錯(cuò)角相等,則可證.(2)由于△DEF∽△EBC,可根據(jù)兩三角形的相似比,求出△EBC的面積,也就求出了四邊形BCDF的面積.同理可根據(jù)△DEF∽△AFB,求出△AFB的面積.由此可求出?ABCD的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形∴∠A=∠C,AB∥CD∴∠ABF=∠CEB∴△ABF∽△CEB(2)解:∵四邊形ABCD是平行四邊形∴AD∥BC,AB平行且等于CD∴△DEF∽△CEB,△DEF∽△ABF∵DE=CD∴,∵S△DEF=2S△CEB=18,S△ABF=8,∴S四邊形BCDF=S△BCE-S△DEF=16∴S四邊形ABCD=S四邊形BCDF+S△ABF=16+8=1.考點(diǎn):1.相似三角形的判定與性質(zhì);2.三角形的面積;3.平行四邊形的性質(zhì).18、證明見(jiàn)解析;(2)①9;②12.5.【解析】
(1)根據(jù)對(duì)角線互相平分的四邊形為平行四邊形證明即可;(2)①若四邊形PBEC是矩形,則∠APC=90°,求得AP即可;②若四邊形PBEC是菱形,則CP=PB,求得AP即可.【詳解】∵點(diǎn)D是BC的中點(diǎn),∴BD=CD.∵DE=PD,∴四邊形PBEC是平行四邊形;(2)①當(dāng)∠APC=90°時(shí),四邊形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴當(dāng)AP的值為9時(shí),四邊形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以設(shè)BC=4x,AB=5x,則(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.當(dāng)PC=PB時(shí),四邊形PBEC是菱形,此時(shí)點(diǎn)P為AB的中點(diǎn),所以AP=12.5,∴當(dāng)AP的值為12.5時(shí),四邊形PBEC是菱形.【點(diǎn)睛】本題考查了菱形的判定、平行四邊形的判定和性質(zhì)、矩形的判定,解題的關(guān)鍵是掌握特殊圖形的判定以及重要的性質(zhì).19、(1)見(jiàn)解析;(2)23π;(3)【解析】
(1)連結(jié)OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結(jié)論;(2)設(shè)∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進(jìn)而可得到∠DOB=60o,然后根據(jù)弧長(zhǎng)公式計(jì)算即可;(3)連結(jié)OM,過(guò)D作DF⊥AB于點(diǎn)F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質(zhì)求解即可.【詳解】(1)連結(jié)OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設(shè)∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長(zhǎng)l=60·π·2(3)連結(jié)OM,過(guò)D作DF⊥AB于點(diǎn)F,∵點(diǎn)M是的中點(diǎn),∴OM⊥AB,設(shè)BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN【點(diǎn)睛】本題是圓的綜合題,考查了切線的判定,圓周角定理及其推論,三角形外角的性質(zhì),含30°角的直角三角形的性質(zhì),弧長(zhǎng)的計(jì)算,弧弦圓心角的關(guān)系,相似三角形的判定與性質(zhì).熟練掌握切線的判定方法是解(1)的關(guān)鍵,求出∠A=30o是解(2)的關(guān)鍵,證明△OMN∽△FDN是解(3)的關(guān)鍵.20、見(jiàn)解析【解析】
(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個(gè)等腰直角三角形得AO=BO,OE=OF,再找?jiàn)A角相等,這兩個(gè)夾角都是直角減去∠BOE的結(jié)果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長(zhǎng)AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.21、(1)1;(2)點(diǎn)D(8﹣23,0);(3)點(diǎn)D的坐標(biāo)為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點(diǎn)B的坐標(biāo)知OA=8、AB=1、OB=10,根據(jù)折疊性質(zhì)可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質(zhì)和中垂線的性質(zhì)證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點(diǎn)D在OA上和點(diǎn)D在AO延長(zhǎng)線上這兩種情況,利用相似三角形的判定和性質(zhì)分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點(diǎn)A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點(diǎn)D(8﹣23,0);(Ⅲ)①如圖3,當(dāng)點(diǎn)D在OA上時(shí).由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點(diǎn)A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當(dāng)點(diǎn)D在AO延長(zhǎng)線上時(shí),過(guò)點(diǎn)A′作x軸的平行線交y軸于點(diǎn)M,延長(zhǎng)AB交所作直線于點(diǎn)N,則BN=CM,MN=BC=OA=8,由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點(diǎn)A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點(diǎn)D的坐標(biāo)為(﹣35﹣1,0).綜上,點(diǎn)D的坐標(biāo)為(35﹣1,0)或(﹣35﹣1,0).點(diǎn)睛:本題主要考查四邊形的綜合問(wèn)題,解題的關(guān)鍵是熟練掌握折疊變換的性質(zhì)、矩形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識(shí)點(diǎn).22、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點(diǎn)坐標(biāo)(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】
(1)將A,B兩點(diǎn)坐標(biāo)代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據(jù)解析式求出C點(diǎn)坐標(biāo),及頂點(diǎn)E的坐標(biāo),設(shè)點(diǎn)D的坐標(biāo)為(0,m),作EF⊥y軸于點(diǎn)F,利用勾股定理表示出DC,DE的長(zhǎng).再建立相等關(guān)系式求出m值,進(jìn)而求出D點(diǎn)坐標(biāo);(3)先根據(jù)邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當(dāng)以C、D、P為頂點(diǎn)的三角形與△DOC相似時(shí),根據(jù)對(duì)應(yīng)邊不同進(jìn)行分類討論:①當(dāng)OC與CD是對(duì)應(yīng)邊時(shí),有比例式,能求出DP的值,又因?yàn)镈E=DC,所以過(guò)點(diǎn)P作PG⊥y軸于點(diǎn)G,利用平行線分線段成比例定理即可求出DG,PG的長(zhǎng)度,根據(jù)點(diǎn)P在點(diǎn)D的左邊和右邊,得到符合條件的兩個(gè)P點(diǎn)坐標(biāo);②當(dāng)OC與DP是對(duì)應(yīng)邊時(shí),有比例式,易求出DP,仍過(guò)點(diǎn)P作PG⊥y軸于點(diǎn)G,利用比例式求出DG,PG的長(zhǎng)度,然后根據(jù)點(diǎn)P在點(diǎn)D的左邊和右邊,得到符合條件的兩個(gè)P點(diǎn)坐標(biāo);這樣,直線DE上根據(jù)對(duì)應(yīng)邊不同,點(diǎn)P所在位置不同,就得到了符合條件的4個(gè)P點(diǎn)坐標(biāo).【詳解】解:(1)∵拋物線y=x2+bx+c經(jīng)過(guò)A(﹣1,0)、B(0,﹣3),∴,解得,故拋物線的函數(shù)解析式為y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則點(diǎn)C的坐標(biāo)為(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴點(diǎn)E坐標(biāo)為(1,﹣4),設(shè)點(diǎn)D的坐標(biāo)為(0,m),作EF⊥y軸于點(diǎn)F(如下圖),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴點(diǎn)D的坐標(biāo)為(0,﹣1);(3)∵點(diǎn)C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根據(jù)勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①當(dāng)OC與CD是對(duì)應(yīng)邊時(shí),∵△DOC∽△PDC,∴,即=,解得DP=,過(guò)點(diǎn)P作PG⊥y軸于點(diǎn)G,則,即,解得DG=1,PG=,當(dāng)點(diǎn)P在點(diǎn)D的左邊時(shí),OG=DG﹣DO=1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 挖掘機(jī)工作機(jī)構(gòu)課程設(shè)計(jì)
- 搖擺支架課程設(shè)計(jì)
- 《基于隱私區(qū)塊鏈的農(nóng)產(chǎn)品溯源系統(tǒng)研究》
- 《人體體溫快速篩選及身份識(shí)別系統(tǒng)實(shí)現(xiàn)》
- 《Pb和BaP對(duì)黑麥草耐性及礦質(zhì)營(yíng)養(yǎng)吸收特征的研究》
- 《未成年刑事被害預(yù)防研究》
- 數(shù)字壓力計(jì)課程設(shè)計(jì)
- 2024-2030年中國(guó)水晶鏡面釉行業(yè)供需狀況發(fā)展戰(zhàn)略規(guī)劃分析報(bào)告
- 2024-2030年中國(guó)氫氧化鎳行業(yè)發(fā)展前景調(diào)研與投資策略分析報(bào)告
- 2024-2030年中國(guó)民營(yíng)醫(yī)院產(chǎn)業(yè)未來(lái)發(fā)展趨勢(shì)及前景調(diào)研分析報(bào)告
- 國(guó)開2024年秋《經(jīng)濟(jì)法學(xué)》計(jì)分作業(yè)1-4答案形考任務(wù)
- JGJT10-2011 混凝土泵送技術(shù)規(guī)程
- 兒童哮喘診療指南
- 飲水機(jī)濾芯更換記錄表
- 空氣站質(zhì)量控制措施之運(yùn)行維護(hù)
- 方解石礦產(chǎn)地質(zhì)工作指引
- 水土保持遙感監(jiān)測(cè)技術(shù)規(guī)范
- 藍(lán)色簡(jiǎn)約公安警察工作匯報(bào)PPT模板
- 供配電系統(tǒng)工程建設(shè)監(jiān)理實(shí)施細(xì)則
- ICC國(guó)際商會(huì)NCNDA和IMFPA中英文對(duì)照可編輯
- 益生元PPT課件
評(píng)論
0/150
提交評(píng)論