版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
CenterforSecurityandEmergingTechnology|1
Thispaperisthefifthinstallmentinaserieson“AIsafety,”anareaofmachinelearningresearchthataimstoidentifycausesofunintendedbehaviorinmachinelearning
systemsanddeveloptoolstoensurethesesystemsworksafelyandreliably.OtherpapersintheseriesdescribethreecategoriesofAIsafetyissues—problemsof
robustness,assurance,andspecification.Thispaperintroducestheideaofuncertaintyquantification,i.e.,trainingmachinelearningsystemsthat“knowwhattheydon’t
know.”
Introduction
Thelastdecadeofprogressinmachinelearningresearchhasgivenrisetosystems
thataresurprisinglycapablebutalsonotoriouslyunreliable.ThechatbotChatGPT,
developedbyOpenAI,providesagoodillustrationofthistension.Usersinteracting
withthesystemafteritsreleaseinNovember2022quicklyfoundthatwhileitcouldadeptlyfindbugsinprogrammingcodeandauthorSeinfeldscenes,itcouldalsobeconfoundedbysimpletasks.Forexample,onedialogueshowedthebotclaimingthatthefastestmarinemammalwastheperegrinefalcon,thenchangingitsmindtothesailfish,thenbacktothefalcon—despitetheobviousfactthatneitherofthesechoicesisamammal.Thiskindofunevenperformanceischaracteristicofdeeplearning
systems—thetypeofAIsystemsthathaveseenmostprogressinrecentyears—andpresentsasignificantchallengetotheirdeploymentinreal-worldcontexts.
Anintuitivewaytohandlethisproblemistobuildmachinelearningsystemsthat
“knowwhattheydon’tknow”—thatis,systemsthatcanrecognizeandaccountfor
situationswheretheyaremorelikelytomakemistakes.Forinstance,achatbotcoulddisplayaconfidencescorenexttoitsanswers,oranautonomousvehiclecouldsoundanalarmwhenitfindsitselfinascenarioitcannothandle.Thatway,thesystemcouldbeusefulinsituationswhereitperformswell,andharmlessinsituationswhereitdoesnot.ThiscouldbeespeciallyusefulforAIsystemsthatareusedinawiderangeof
settings,suchaslargelanguagemodels(thetechnologythatpowerschatbotslike
ChatGPT),sincethesesystemsareverylikelytoencounterscenariosthatdivergefromwhattheyweretrainedandtestedfor.
Unfortunately,designingmachinelearningsystemsthatcanrecognizetheirlimitsis
morechallengingthanitmayappearatfirstglance.Infact,enablingmachinelearningsystemsto“knowwhattheydon’tknow”—knownintechnicalcirclesas“uncertaintyquantification”—isanopenandwidelystudiedresearchproblemwithinmachine
learning.Thispapergivesanintroductiontohowuncertaintyquantificationworks,whyitisdifficult,andwhattheprospectsareforthefuture.
CenterforSecurityandEmergingTechnology|2
TheChallengeofReliablyQuantifyingUncertainty
Inprinciple,thekindofsystemwewouldliketobuildsoundssimple:amachine
learningmodelthatgenerallymakescorrectpredictions,butthatcanindicatewhenitspredictionsaremorelikelytobeincorrect.Ideally,suchamodelwouldindicatehighlevelsofuncertaintyneithertoooftennortooseldom.Asystemthatconstantly
expressesunder-confidenceinsituationsthatitcouldactuallyhandlewellisnotveryuseful,butifthesystemsometimesdoesnotindicateuncertaintywheninfactitis
abouttofail,thenthisdefeatsthepurposeoftryingtoquantifyuncertaintyinthefirstplace.Expertsusetheideaof“calibration”todescribethedesiredbehaviorhere:thelevelofuncertaintythatamachinelearningmodelassignstoagivenprediction—its“predictiveuncertainty”—shouldbecalibratedtotheprobabilitythatthepredictionisinfactincorrect.
Figure1:CalibrationCurvesDepictingUnder-Confidence,Near-PerfectCalibration,andOver-Confidence
Thefiguresshowunder-confident(left),well-calibrated(center),andover-confident(right)calibrationcurves.Ideally,theconfidenceexpressedbythemodel(onthex-axis)shouldcorrespondtothechancethatthepredictioniscorrect(onthey-axis).Amodelisunder-confidentifitspredictionsaremoreoftencorrectthanitsconfidencelevelswouldimply(perthechartontheleft),whiletheinverseistrueforanover-confidentmodel(ontheright).
Source:CSET.
Forexample,imagineamedicalmachinelearningclassificationsystemthatusesascanofapatient’seyetopredictwhetherthepatienthasaretinaldisease
.1
Ifthesystemiscalibrated,thenitspredictions—typicallyexpressedaspercentages—should
correspondtothetrueproportionofdiseasedretinas.Thatis,itshouldbethecasethat
CenterforSecurityandEmergingTechnology|3
oftheretinaimagespredictedtobeexhibitingsignsofdiseasewitha50%chance,halfareinfactdiseased,orthateightoutoftenretinaimagespredictedtohavean80%
probabilityofexhibitingsignsofdiseaseinfactdo,andsoon.Theclosertheassignedprobabilitiesaretotherealproportionintheevaluationdata,thebettercalibratedthesystemis.Awell-calibratedsystemisusefulbecauseitallowsuserstoaccountfor
howlikelythepredictionistobecorrect.Forexample,adoctorwouldlikelymake
differentdecisionsaboutfurthertestingandtreatmentforapatientwhosescan
indicateda0.1%chanceofdiseaseversusonewhosescanindicateda30%chance—eventhoughneitherscanwouldbeclassifiedaslikelydiseased.
UnderstandingDistributionShift
Buildingasystemthatcanexpresswell-calibratedpredictiveuncertaintyinthe
laboratory—whilenotstraightforward—isachievable.Thechallengeliesincreatingmachinelearningmodelsthatcanreliablyquantifyuncertaintywhensubjectedtothemessinessoftherealworldinwhichtheyaredeployed.
Attherootofthischallengeliesanideacalled“distributionshift.”Thisreferstothewaysinwhichthetypesofdatathatamachinelearningsystemencounters(the“datadistribution”)changefromonesettingtoanother.Forinstance,aself-drivingcar
trainedusingdatafromSanFrancisco’sroadsisunlikelytoencountersnow,soifthesamecarweredeployedinBostonduringthewinter,itwouldencounteradifferentdatadistribution(onethatincludessnowontheroads),makingitmorelikelytofail.
Distributionshiftiseasytodescribeinformally,butverydifficulttodetect,measure,ordefineprecisely.Thisisbecauseitisespeciallydifficulttoforeseeandaccountforallthepossibletypesofdistributionshiftsthatasystemmightencounterinpractice.
Whenaparticularshiftcanbeanticipated—forinstance,iftheengineersthattrainedtheself-drivingcarinSanFranciscowereplanningaBostondeploymentand
consideringweatherdifferences—thenitisrelativelystraightforwardtomanage.Inmostcases,however,itisimpossibletoknowinadvancewhatkindsofunexpectedsituations—whatunknownunknowns—asystemdeployedinthemessyrealworldmayencounter.
Theneedtodealwithdistributionshiftsmakesquantifyinguncertaintydifficult,
similarlytothebroaderproblemofgeneralizationinmodernmachinelearning
systems.Whileitispossibletoevaluateamodel’saccuracyonalimitedsetofdata
pointsinthelab,therearenomathematicalguaranteesthatensurethatamodelwillperformaswellwhendeployed(i.e.,thatwhatthesystemlearnedwill“generalize”
beyonditstrainingdata).Likewise,foruncertaintyquantification,thereisnoguarantee
CenterforSecurityandEmergingTechnology|4
thataseeminglywell-calibratedmodelwillremaincalibratedondatapointsthataremeaningfullydifferentfromthetrainingdata.Butwhilethereisavastamountof
empiricalandtheoreticalliteratureonhowwellmodelsgeneralizetounseen
examples,thereisrelativelylittleworkonmodels’abilitytoreliablyidentifysituationswheretheiruncertaintyshouldbehigh,making“uncertaintygeneralization”oneofthemostimportantandyetrelativelyunderexploredareasofmachinelearningresearch.
AccuratelyCharacterizingUncertainty
Inthemedicalimagingexampleabove,wedescribedhowmachinelearningmodelsusedforclassificationproduceprobabilitiesforeachclass(e.g.,diseasedversusnot
diseased),butsuchprobabilitiesmaynotbesufficientforreliableuncertainty
quantification.Theseprobabilityscoresindicatehowstronglyamodelpredictsthatagiveninputcorrespondstoagivenoutput.Forinstance,animageclassifierforreadingzipcodestakesinanimageofahandwrittendigit,thenassignsascoretoeachofthe
tenpossibleoutputs(correspondingtothedigitintheimagebeinga“0,”“1,”“2,”etc.).Theoutputwiththehighestscoreindicatesthedigitthattheclassifierthinksismostlikelytobeintheimage.
Unfortunately,thesescoresaregenerallynotusefulindicatorsofthemodel’s
uncertainty,fortworeasons.First,theyaretheresultofatrainingprocessthatwas
optimizingforthemodeltoproduceaccurateoutputs,notcalibratedprobabilities
;2
thus,thereisnoparticularreasontobelievethatascoreof99.9%reliablycorrespondstoahigherchancethattheoutputiscorrectthanascoreof95%.Second,systems
designedthiswayhavenowaytoexpress“noneoftheabove”—say,ifthezipcodereaderencounteredabugsplatteredacrossthepage.Themodelismathematicallyforcedtoassignprobabilityscorestotheavailableoutputs,andtoensurethatthosescoressumtoone
.3
Thisnaturallyraisesthequestionofwhyaddinga“noneoftheabove”optionisnotpossible.Thereasonissimple:modelslearnfromdataand,duetothechallengesofdistributionshiftdescribedabove,AIdeveloperstypicallydonothavedatathat
representsthebroadrangeofpossibilitiesthatcouldfitintoa“noneoftheabove”
option.Thismakesitinfeasibletotrainamodelthatcanconsistentlyrecognizeinputsasbeingmeaningfullydifferent.
Tosummarize,thecoreproblemmakinguncertaintyquantificationdifficultisthatinmanyreal-worldsettings,wecannotcleanlyarticulateandprepareforeverytypeofsituationamodelmayneedtobeabletohandle.Theaimistofindawayforthe
systemtoidentifysituationswhenitislikelytofail—butbecauseitisimpossibleto
CenterforSecurityandEmergingTechnology|5
exposethesystemtoeverykindofscenarioinwhichitmightperformpoorly,itis
impossibletoverifyinadvancethatthesystemwillappropriatelyestimateitschancesofperformingwellundernovel,untestedconditions.Inthenextsection,wediscussseveralapproachesthattrytonavigatethisdifficulty.
ExistingApproachestoUncertaintyQuantification
Thekeychallengeofuncertaintyquantificationistodevelopmodelsthatcan
accuratelyandreliablyexpresshowlikelytheirpredictionsaretobecorrect.Awiderangeofapproacheshavebeendevelopedthataimtoachievethisgoal.Some
approachesprimarilytreatuncertaintyquantificationasanengineeringchallengethatcanbeaddressedwithtailoredalgorithmsandmoretrainingdata.Othersseektousemoremathematicallygroundedtechniquesthatcould,intheory,providewatertightguaranteesthatamodelcanquantifyitsownuncertaintywell.Unfortunately,itisnotcurrentlypossibletoproducesuchmathematicalguaranteeswithoutusingunrealisticassumptions.Instead,thebestwecandoisdevelopmodelsthatquantifyuncertaintywelloncarefullydesignedempiricaltests.
Approachestouncertaintyquantificationinmodernmachinelearningfallintofourdifferentcategories:
1.DeterministicMethods
2.ModelEnsembling
3.ConformalPrediction
4.BayesianInference
Eachoftheseapproacheshasdistinctbenefitsanddrawbacks,withsomeproviding
mathematicalguaranteesandothersperformingparticularlywellonempiricaltests.Weelaborateoneachtechniqueintheremainderofthissection.Readersarewelcometoskiptothenextsectionifthesomewhatmoretechnicalmaterialbelowisnotof
interest.
DeterministicMethods
Deterministicmethodsworkbyexplicitlyencouragingthemodeltoexhibithigh
uncertaintyoncertaininputexamplesduringtraining.Forexample,researchersmightstartbytrainingamodelononedataset,thenintroduceadifferentdatasetwiththeexpectationthatthemodelshouldexpresshighuncertaintyonexamplesfromthe
datasetitwasnottrainedon.Usingthisapproachresultsinmodelsthatareveryaccurateondatasimilartowhattheyweretrainedon,andthatindicatehigh
uncertaintyforotherdata
.4
CenterforSecurityandEmergingTechnology|6
However,itisnotclearhowmuchwecanrelyontheseresearchresultsinpractice.
Modelstrainedthiswayareoptimizedtorecognizethatsometypesofinputare
outsidethescopeofwhattheycanhandle.Butbecausetherealworldiscomplexandunpredictable,itisimpossibleforthistrainingtocoverallpossiblewaysinwhichan
inputcouldbeoutofscope.Forexample,evenifwetrainedthemedicalimaging
classifierdescribedabovetohavehighpredictiveuncertaintyonimagesthatexhibit
commonlyknownimagecorruptions,itmaystillfailatdeploymentifthemodelwas
trainedonimagesobtainedinonehospitalwithacertaintypeofequipment,and
deployedinanotherhospitalwithadifferenttypeofequipment.Asaresult,this
approachispronetofailurewhenthemodelisdeployed,andthereisnoknownwaytoguaranteethatthepredictiveuncertaintyestimateswillinfactbereliable.
ModelEnsembling
Modelensemblingisasimplemethodthatcombinesmultipletrainedmodelsand
averagestheirpredictions.Thisapproachoftenimprovespredictiveaccuracycomparedtojustusingasinglemodel.Anensemble’spredictiveuncertaintyisexpressedasthestandarddeviationofthedifferentpredictions,meaningthatifallofthemodelsintheensemblemakesimilarpredictions,thenuncertaintyislow;iftheymakeverydifferentpredictions,uncertaintyishigh.Ensemblemethodsareoftensuccessfulatproviding
goodpredictiveuncertaintyestimatesinpractice,andarethereforeapopular
approach—thoughtheycanbeexpensive,giventhatmultiplemodelsmustbetrained.Theunderlyingmechanismofusingensemblingforuncertaintyquantificationisthat
differentmodelsinanensemblewillbelikelytoagreeoninputexamplessimilartothetrainingdata,butmaydisagreeoninputexamplesmeaningfullydifferentfromthe
trainingdata.Assuch,whenthepredictionsoftheensemblecomponentsdiffer,thiscanbeusedasastand-inforuncertainty
.5
However,thereisnowaytoverifythatthismechanismworksforanygivenensembleandinputexample.Inparticular,itispossiblethatforsomeinputexamples,multiplemodelsintheensemblemayallgivethesameincorrectanswer,whichwouldgiveafalseimpressionofconfidence,anditisimpossibletoensurethatagivenensemble
willprovidereliable,well-calibratedpredictiveuncertaintyestimatesacrosstheboard.Forsomeusecases,thefactthatensemblingtypicallyprovidesfairlygooduncertaintyestimatesmaybesufficienttomakeitworthusing.Butincaseswheretheuserneedstobeabletotrustthatthesystemwillreliablyidentifysituationswhereitislikelytofail,ensemblingshouldnotbeconsideredareliablemethod.
CenterforSecurityandEmergingTechnology|7
ConformalPrediction
Conformalprediction,incontrastwithdeterministicmethodsandensembling,isa
statisticallywell-foundedapproachthatprovidesmathematicalreliabilityguarantees,butreliesonakeyassumption:thatthedatathemodelwillencounteroncedeployedisgeneratedbythesameunderlyingdata-generatingprocessasthetrainingdata(i.e.,thatthereisnodistributionshift).Usingthisassumption,conformalpredictioncan
providemathematicalguaranteesoftheprobabilitythatagivenpredictionrangeincludedthecorrectprediction.Forinstance,inaweatherforecastingsetting,
conformalpredictioncouldguaranteea95%chancethattheday’smaximum
temperaturewillfallwithinacertainrange.(Thatis,itcouldprovideamathematical
guaranteethat95outof100similarpredictionswouldfallwithintherange.
)6
A
predictedrangeof,say,82oF-88oFwouldimplymoreuncertaintythanarangeof83oF-85oF.
Conformalprediction’smajoradvantageisthatitispossibletomathematicallyguaranteethatitspredictiveuncertaintyestimatesarecorrectundercertain
assumptions.Itsmajordisadvantageisthatthoseassumptions—primarilythatthe
modelwillencountersimilardatawhiledeployedtothedataitwastrainedon—oftendonothold.Worse,itisoftenimpossibletodetectwhentheseassumptionsare
violated,meaningthatthesamekindofchangesininputsthatmaytripup
deterministicmethodsarealsolikelytocauseconformalpredictiontofail.Infact,inalloftheexampleapplicationproblemswheremachinelearningmodelsarepronetofailandforwhichwewouldliketofindapproachestoimprovinguncertaintyquantification,standardassumptionsofconformalpredictionwouldbeviolated.
BayesianInference
Lastly,BayesianuncertaintyquantificationusesBayesianinference,whichprovidesamathematicallyprincipledframeworkforupdatingtheprobabilityofahypothesisas
moreevidenceorinformationbecomesavailable
.7
Bayesianinferencecanbeusedto
trainaneuralnetworkthatrepresentseachparameterinthenetworkasarandom
variable,ratherthanasinglefixedvalue(asistypicallythecase).Whilethisapproachisguaranteedtoprovideanaccuraterepresentationofamodel’spredictiveuncertainty,itiscomputationallyinfeasibletocarryoutexactBayesianinferenceonmodern
machinelearningmodelssuchasneuralnetworks.Instead,thebestresearcherscandoistouseapproximations,meaningthatanyguaranteethatthemodel’suncertaintywillbeaccuratelyrepresentedislost.
CenterforSecurityandEmergingTechnology|8
PracticalConsiderationsinUsingUncertaintyQuantification
Uncertaintyquantificationmethodsformachinelearningareapowerfultoolformakingmodernmachinelearningsystemsmorereliable.Whilenoexistingapproachisasilverbulletandeachapproachhasdistinctpracticalshortcomings,researchhasshownthatmethodsspecificallydesignedtoimprovetheabilityofmodernmachinelearning
systemstoquantifytheiruncertainty—suchastheapproachesdescribedabove—
succeedatdoingsoinmostsettings.Thesemethodsthereforeoftenserveas“add-ons”tostandardtrainingroutines.Theycanbecustom-designedtomeetthespecificchallengesofagivenpredictiontaskordeploymentsettingandcanaddanadditionalsafetylayertodeployedsystems.
Consideringhuman-computerinteractioniscrucialformakingeffectiveuseof
uncertaintyquantificationmethods.Forexample,beingabletointerpretamodel’s
uncertaintyestimates,determiningthelevelofuncertaintyinmachinelearning
systemsthathumanoperatorsarecomfortablewith,andunderstandingwhenandwhyasystem’suncertaintyestimatesmaybeunreliableisextremelyimportantforsafety-criticalapplicationsettings.Choicesaroundthedesignofuserinterfaces,datavisualizations,andusertrainingcanmakeabigdifferenceinhowusefuluncertaintyestimatesareinpractice
.8
Giventhelimitationsofexistingapproachestouncertaintyquantification,itisessentialthattheuseofuncertaintyestimatesdoesnotcreateafalsesenseofconfidence.
Systemsmustbedesignedtoaccountforthefactthatamodeldisplayinghigh
confidencecouldstillbewrongifithasencounteredanunknownunknownthatgoesbeyondwhatitwastrainedandtestedfor.
CenterforSecurityandEmergingTechnology|9
Outlook
Thereisincreasinginterestinhowuncertaintyquantificationcouldbeusedtomitigatetheweaknessesoflargelanguagemodels,suchastheirtendencytohallucinate.Whilemuchpastworkinthespacehasfocusedonimageclassificationorsimpletabular
datasets,someresearchersarebeginningtoexplorewhatitwouldlooklikefor
chatbotsorotherlanguage-basedsystemsto“knowwhattheydon’tknow.
”9
This
researchneedstograpplewithchallengesspecifictolanguagegeneration,suchasthefactthatthereisoftennosinglecorrectanswer.(Forinstance,correctanswerstothequestion:“WhatisthecapitalofFrance?”couldinclude,“Paris,”“It’sParis,”or“The
capitalofFranceisParis,”eachofwhichrequiresthelanguagemodeltomakedifferentpredictionsaboutwhichwordshouldcomenext.)
Duetothefundamentalchallengesofreliablyquantifyinguncertainty,weshouldnotexpectaperfectsolutiontobedevelopedforlanguagegenerationoranyothertypeofmachinelearning.Justaswiththebroaderchallengeofbuildingmachinelearning
systemsthatcangeneralizetonewcontexts,thepossibilityofdistributionshiftmeansthatwemayneverbeabletobuildAIsystemsthat“knowwhattheydon’tknow”withcompletecertainty.
Nonetheless,researchintoreliableuncertaintyquantificationinchallengingdomains—suchascomputervisionorreinforcementlearning—hasmadegreatstridesin
improvingthereliabilityandrobustnessofmodernmachinelearningsystemsoverthepastfewyearsandwillplayacrucialroleinimprovingthesafety,reliability,and
interpretabilityoflargelanguagemodelsinthenearfuture.Overtime,uncertainty
quantificationinmachinelearningsystemsislikelytomovefrombeinganareaofbasicresearchtoapracticalengineeringchallengethatcanbeapproachedwiththedifferentparadigmsandmethodsdescribedinthispaper.
CenterforSecurityandEmergingTechnology|10
Authors
TimG.J.Rudnerisanon-residentAI/MLfellowwithCSETandafacultyfellowatNewYorkUniversity.
HelenToneristhedirectorofstrategyandfoundationalresearchgrantsatCSET.
Acknowledgments
Forfeedbackandassistance,wearegratefultoAlexEngler,HeatherFrase,MargaritaKonaev,LarryLewis,EmeliaProbasco,andThomasWoodside.
?2024bytheCenterforSecurityandEmergingTechnology.ThisworkislicensedunderaCreativeCommonsAttribution-NonCommercial4.0InternationalLicense.
Toviewacopyofthislicense,visit
/licenses/by-nc/4.0/.
DocumentIdentifier:doi:10.51593/20220013
CenterforSecurityandEmergingTechnology|11
Endnotes
1NeilBandetal.,BenchmarkingBayesianDeepLearningonDiabeticRetinopathyDetectionTasks,AdvancesinNeuralInformationProcessingSystems,2021,
/forum?id=jyd4Lyjr2iB.
2Wenotethat,technically,modelsaretrainedtoachieveahighcross-entropybetweenthedatalabelsandthepredictedprobabilities.Thismetricdoesdiscouragethemodel—tosomeextent—frombeingconfidentandwrongonthetrainingdatabutdoesnotnecessarilyleadtowell-calibratedpredictions.
3Forsimplicity,weonlydiscussclassificationproblems,whereamodelpredictsclassprobabilitiesthatmakeiteasytocomputethecalibrationofapredictivemodel.
4See,forexample,thispaperonpredictingretinaldisease(includingTable4onexpectedcalibration
error):JoostvanAmersfoort,LewisSmith,YeeWhyeTeh,andYarinGal,“UncertaintyEstimat
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度文化遺址場地保護與利用合同協(xié)議書3篇
- 專業(yè)拓展訓(xùn)練合作合同書2024版版B版
- 2024離婚雙方房產(chǎn)分割及過戶操作補充合同版B版
- 2024綜合授信額度合同及分期貸款細則版B版
- 2025年度廠房租賃及品牌授權(quán)合作協(xié)議3篇
- 2025年度工業(yè)廠房拆除及重建合同范本4篇
- 2025年度商業(yè)地產(chǎn)項目場地借用合同樣本3篇
- 2025年度數(shù)字化工廠搬遷工程合同范本4篇
- 油品基礎(chǔ)知識培訓(xùn)課件
- 2024版室內(nèi)粉刷工作班組勞動協(xié)議樣本版B版
- 2023年Web前端技術(shù)試題
- GB/T 20840.8-2007互感器第8部分:電子式電流互感器
- GB/T 14864-2013實心聚乙烯絕緣柔軟射頻電纜
- 品牌策劃與推廣-項目5-品牌推廣課件
- 信息學(xué)奧賽-計算機基礎(chǔ)知識(完整版)資料
- 發(fā)煙硫酸(CAS:8014-95-7)理化性質(zhì)及危險特性表
- 數(shù)字信號處理(課件)
- 公路自然災(zāi)害防治對策課件
- 火災(zāi)報警應(yīng)急處置程序流程圖
- 耳鳴中醫(yī)臨床路徑
- 安徽身份證號碼前6位
評論
0/150
提交評論