版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)安徽工程大學(xué)
《智能終端軟件開(kāi)發(fā)》2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的模型評(píng)估中,需要使用多種指標(biāo)來(lái)衡量模型的性能。假設(shè)評(píng)估一個(gè)分類模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,哪一項(xiàng)是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,是常用的評(píng)估指標(biāo)之一B.召回率衡量了被正確識(shí)別的正例在實(shí)際正例中的比例C.F1值綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評(píng)估指標(biāo)D.只要模型的準(zhǔn)確率高,就說(shuō)明模型在實(shí)際應(yīng)用中表現(xiàn)良好,無(wú)需考慮其他指標(biāo)2、人工智能在教育領(lǐng)域有潛在的應(yīng)用,例如個(gè)性化學(xué)習(xí)系統(tǒng)。假設(shè)要為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑,以下哪種數(shù)據(jù)對(duì)于系統(tǒng)的設(shè)計(jì)最為關(guān)鍵?()A.學(xué)生的考試成績(jī)B.學(xué)生的學(xué)習(xí)時(shí)間C.學(xué)生的學(xué)習(xí)風(fēng)格和偏好D.學(xué)校的課程設(shè)置3、自然語(yǔ)言處理是人工智能的重要應(yīng)用領(lǐng)域之一。假設(shè)我們要開(kāi)發(fā)一個(gè)能夠自動(dòng)回答用戶問(wèn)題的智能客服系統(tǒng),需要對(duì)大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和理解。在這個(gè)過(guò)程中,詞向量模型如Word2Vec和GloVe起到了關(guān)鍵作用。那么,關(guān)于詞向量模型,以下說(shuō)法哪一項(xiàng)是不準(zhǔn)確的?()A.能夠?qū)卧~表示為低維的實(shí)數(shù)向量,捕捉單詞之間的語(yǔ)義關(guān)系B.可以通過(guò)對(duì)大規(guī)模語(yǔ)料庫(kù)的無(wú)監(jiān)督學(xué)習(xí)得到C.不同的詞向量模型在處理多義詞時(shí)效果都很好D.詞向量的計(jì)算可以基于單詞的上下文信息4、人工智能中的無(wú)人駕駛技術(shù)面臨著眾多技術(shù)和法律挑戰(zhàn)。假設(shè)我們?cè)谟懻摕o(wú)人駕駛汽車的責(zé)任歸屬問(wèn)題,以下關(guān)于無(wú)人駕駛責(zé)任的說(shuō)法,哪一項(xiàng)是不正確的?()A.事故責(zé)任的判定應(yīng)該綜合考慮多種因素B.完全由無(wú)人駕駛汽車的制造商承擔(dān)責(zé)任C.法律法規(guī)需要隨著技術(shù)發(fā)展不斷完善D.乘客在某些情況下也可能承擔(dān)一定責(zé)任5、人工智能中的無(wú)監(jiān)督學(xué)習(xí)可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和結(jié)構(gòu)。以下關(guān)于無(wú)監(jiān)督學(xué)習(xí)的描述,不正確的是()A.聚類分析和主成分分析是常見(jiàn)的無(wú)監(jiān)督學(xué)習(xí)方法B.無(wú)監(jiān)督學(xué)習(xí)不需要事先標(biāo)注數(shù)據(jù),能夠自動(dòng)從數(shù)據(jù)中學(xué)習(xí)特征C.無(wú)監(jiān)督學(xué)習(xí)的結(jié)果通常難以解釋和評(píng)估,應(yīng)用范圍相對(duì)較窄D.可以用于數(shù)據(jù)預(yù)處理、特征提取和異常檢測(cè)等任務(wù)6、人工智能在金融領(lǐng)域的應(yīng)用不斷拓展,假設(shè)一個(gè)銀行使用人工智能系統(tǒng)進(jìn)行信用評(píng)估,以下關(guān)于這種應(yīng)用的描述,正確的是:()A.人工智能信用評(píng)估系統(tǒng)能夠完全取代人工評(píng)估,不會(huì)出現(xiàn)任何錯(cuò)誤B.數(shù)據(jù)的質(zhì)量和特征選擇對(duì)人工智能信用評(píng)估系統(tǒng)的準(zhǔn)確性至關(guān)重要C.人工智能信用評(píng)估系統(tǒng)只考慮客戶的財(cái)務(wù)數(shù)據(jù),不考慮其他非財(cái)務(wù)因素D.銀行不需要對(duì)人工智能信用評(píng)估系統(tǒng)的結(jié)果進(jìn)行審核和監(jiān)督7、深度學(xué)習(xí)在近年來(lái)取得了顯著的成果,特別是在圖像識(shí)別和語(yǔ)音識(shí)別等領(lǐng)域。以下關(guān)于深度學(xué)習(xí)的敘述,不準(zhǔn)確的是()A.深度學(xué)習(xí)是一種基于多層神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)方法,能夠自動(dòng)從數(shù)據(jù)中學(xué)習(xí)特征B.深度學(xué)習(xí)模型需要大量的訓(xùn)練數(shù)據(jù)和強(qiáng)大的計(jì)算資源來(lái)進(jìn)行訓(xùn)練C.深度學(xué)習(xí)可以解決傳統(tǒng)機(jī)器學(xué)習(xí)方法難以處理的復(fù)雜問(wèn)題,如語(yǔ)義理解和情感分析D.深度學(xué)習(xí)模型的結(jié)構(gòu)和參數(shù)一旦確定,就無(wú)法根據(jù)新的數(shù)據(jù)進(jìn)行調(diào)整和優(yōu)化8、在人工智能的目標(biāo)檢測(cè)任務(wù)中,假設(shè)圖像中存在多個(gè)不同大小和形狀的目標(biāo),且目標(biāo)之間存在遮擋。以下哪種檢測(cè)算法能夠較好地應(yīng)對(duì)這種復(fù)雜情況?()A.FasterR-CNN,基于區(qū)域建議網(wǎng)絡(luò)B.YOLO(YouOnlyLookOnce),一次性檢測(cè)所有目標(biāo)C.SSD(SingleShotMultiBoxDetector),多尺度檢測(cè)D.以上都是9、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)手段。以下關(guān)于遷移學(xué)習(xí)的描述,不正確的是()A.遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型和知識(shí),在新的任務(wù)和數(shù)據(jù)上進(jìn)行微調(diào)B.遷移學(xué)習(xí)能夠減少新任務(wù)中的數(shù)據(jù)標(biāo)注工作量和訓(xùn)練時(shí)間C.遷移學(xué)習(xí)只能在相似的領(lǐng)域和任務(wù)中應(yīng)用,無(wú)法跨越不同的領(lǐng)域D.合理運(yùn)用遷移學(xué)習(xí)可以提高模型的泛化能力和性能10、當(dāng)利用人工智能進(jìn)行金融風(fēng)險(xiǎn)評(píng)估,例如評(píng)估信用風(fēng)險(xiǎn)和市場(chǎng)風(fēng)險(xiǎn),以下哪種模型和特征可能是重要的組成部分?()A.邏輯回歸模型和財(cái)務(wù)指標(biāo)B.決策樹(shù)模型和交易數(shù)據(jù)C.深度學(xué)習(xí)模型和宏觀經(jīng)濟(jì)數(shù)據(jù)D.以上都是11、在人工智能的發(fā)展中,算力是重要的支撐因素。假設(shè)要訓(xùn)練一個(gè)大型的人工智能模型,以下關(guān)于算力的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)大的計(jì)算資源,如GPU集群,可以加速模型的訓(xùn)練過(guò)程B.云計(jì)算平臺(tái)可以提供靈活的算力支持,滿足不同規(guī)模的訓(xùn)練需求C.算力的提升僅僅取決于硬件的性能,與算法的優(yōu)化無(wú)關(guān)D.合理分配和利用算力資源對(duì)于提高訓(xùn)練效率和降低成本至關(guān)重要12、在人工智能的情感計(jì)算中,需要從人的面部表情、語(yǔ)音語(yǔ)調(diào)、文字等多模態(tài)信息中識(shí)別情感。假設(shè)要綜合分析這些多模態(tài)信息來(lái)準(zhǔn)確判斷一個(gè)人的情感狀態(tài),以下哪種融合方式是有效的?()A.早期融合,在數(shù)據(jù)層面進(jìn)行整合B.晚期融合,在決策層面進(jìn)行整合C.不進(jìn)行融合,分別處理每個(gè)模態(tài)的信息D.隨機(jī)選擇一種模態(tài)的信息進(jìn)行分析13、人工智能在工業(yè)生產(chǎn)中的質(zhì)量檢測(cè)方面有廣泛應(yīng)用。假設(shè)要開(kāi)發(fā)一個(gè)能夠檢測(cè)產(chǎn)品缺陷的系統(tǒng),需要考慮光照、拍攝角度等因素對(duì)圖像的影響。以下關(guān)于解決這些影響的方法,哪一項(xiàng)是不正確的?()A.使用多光源和多角度拍攝,獲取更全面的產(chǎn)品圖像B.對(duì)圖像進(jìn)行預(yù)處理,如歸一化和標(biāo)準(zhǔn)化,減少光照和角度的影響C.忽略光照和角度的變化,依靠模型的自適應(yīng)能力D.建立光照和角度的模型,對(duì)圖像進(jìn)行校正14、假設(shè)要構(gòu)建一個(gè)能夠自主學(xué)習(xí)并改進(jìn)其性能的人工智能圖像識(shí)別系統(tǒng),用于識(shí)別不同種類的動(dòng)物。在訓(xùn)練過(guò)程中,需要處理大量的圖像數(shù)據(jù),以下哪種機(jī)器學(xué)習(xí)算法可能最為適合?()A.決策樹(shù)B.支持向量機(jī)C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)D.樸素貝葉斯15、人工智能中的模型壓縮技術(shù)可以減少模型的參數(shù)數(shù)量和計(jì)算量。假設(shè)要在移動(dòng)設(shè)備上部署一個(gè)深度學(xué)習(xí)模型,以下哪種模型壓縮方法可能最有效?()A.剪枝B.量化C.知識(shí)蒸餾D.以上都有可能16、在人工智能的自動(dòng)駕駛領(lǐng)域,感知模塊負(fù)責(zé)對(duì)周圍環(huán)境進(jìn)行理解。假設(shè)要實(shí)現(xiàn)對(duì)道路上行人的準(zhǔn)確檢測(cè),以下哪種技術(shù)可能是最關(guān)鍵的?()A.激光雷達(dá)B.毫米波雷達(dá)C.攝像頭D.超聲波傳感器17、在人工智能的研究中,模型的壓縮和量化技術(shù)可以減少模型的參數(shù)和計(jì)算量。以下關(guān)于模型壓縮和量化的敘述,不準(zhǔn)確的是()A.可以通過(guò)剪枝、量化和低秩分解等方法實(shí)現(xiàn)模型壓縮B.模型壓縮和量化會(huì)導(dǎo)致模型性能的一定損失,但可以在可接受范圍內(nèi)提高計(jì)算效率C.模型壓縮和量化技術(shù)只適用于小型模型,對(duì)于大型復(fù)雜模型效果不佳D.這些技術(shù)對(duì)于在資源受限的設(shè)備上部署人工智能模型具有重要意義18、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開(kāi)發(fā)一個(gè)能夠監(jiān)測(cè)農(nóng)作物病蟲(chóng)害的系統(tǒng),以下關(guān)于數(shù)據(jù)采集的方式,哪一項(xiàng)是最有效的?()A.依靠農(nóng)民的人工觀察和報(bào)告,將信息輸入系統(tǒng)B.使用無(wú)人機(jī)搭載的圖像傳感器,定期拍攝農(nóng)田圖像C.僅在農(nóng)作物出現(xiàn)明顯病蟲(chóng)害癥狀時(shí)進(jìn)行數(shù)據(jù)采集D.隨機(jī)選擇農(nóng)田的部分區(qū)域進(jìn)行數(shù)據(jù)采集,以節(jié)省成本19、人工智能在教育領(lǐng)域有潛在的應(yīng)用價(jià)值。假設(shè)要開(kāi)發(fā)一個(gè)個(gè)性化學(xué)習(xí)系統(tǒng),能夠根據(jù)學(xué)生的學(xué)習(xí)情況提供定制的學(xué)習(xí)計(jì)劃。以下關(guān)于收集學(xué)生學(xué)習(xí)數(shù)據(jù)的方法,哪一項(xiàng)是需要謹(jǐn)慎處理的?()A.跟蹤學(xué)生在在線學(xué)習(xí)平臺(tái)上的學(xué)習(xí)時(shí)間、答題情況等B.收集學(xué)生的個(gè)人興趣愛(ài)好和家庭背景等信息C.分析學(xué)生的作業(yè)和考試成績(jī),了解其知識(shí)掌握程度D.通過(guò)問(wèn)卷調(diào)查了解學(xué)生的學(xué)習(xí)風(fēng)格和偏好20、在自然語(yǔ)言處理中,詞向量表示是基礎(chǔ)技術(shù)之一。假設(shè)要對(duì)大量文本進(jìn)行處理和分析。以下關(guān)于詞向量的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.詞向量可以將單詞轉(zhuǎn)換為數(shù)值向量,便于計(jì)算機(jī)處理和計(jì)算B.常見(jiàn)的詞向量模型有One-Hot編碼、Word2Vec和GloVe等C.詞向量的維度越高,表達(dá)能力越強(qiáng),但計(jì)算和存儲(chǔ)成本也越高D.詞向量一旦生成就固定不變,不能根據(jù)新的文本數(shù)據(jù)進(jìn)行更新和優(yōu)化21、當(dāng)利用人工智能進(jìn)行輿情監(jiān)測(cè)和分析,及時(shí)了解公眾對(duì)某一事件或話題的看法和情緒傾向,以下哪種數(shù)據(jù)來(lái)源和分析手段可能是有效的?()A.社交媒體數(shù)據(jù)和情感分析B.新聞評(píng)論數(shù)據(jù)和主題建模C.網(wǎng)絡(luò)搜索數(shù)據(jù)和趨勢(shì)預(yù)測(cè)D.以上都是22、人工智能在教育領(lǐng)域有著潛在的應(yīng)用價(jià)值。假設(shè)要開(kāi)發(fā)一個(gè)個(gè)性化的學(xué)習(xí)系統(tǒng)。以下關(guān)于人工智能在教育中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測(cè)學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能教育系統(tǒng)可以完全取代教師的角色,實(shí)現(xiàn)自主學(xué)習(xí)D.有助于發(fā)現(xiàn)學(xué)生的學(xué)習(xí)問(wèn)題和知識(shí)漏洞,提高教學(xué)效果23、在人工智能的算法中,遺傳算法是一種基于自然選擇和遺傳機(jī)制的優(yōu)化算法??紤]一個(gè)優(yōu)化問(wèn)題,需要在一個(gè)復(fù)雜的搜索空間中找到最優(yōu)解。以下關(guān)于遺傳算法的描述,哪一項(xiàng)是不正確的?()A.遺傳算法通過(guò)模擬生物進(jìn)化過(guò)程來(lái)尋找最優(yōu)解B.遺傳算法容易陷入局部最優(yōu)解C.遺傳算法對(duì)于大規(guī)模的優(yōu)化問(wèn)題具有較好的性能D.遺傳算法的搜索過(guò)程是隨機(jī)的,沒(méi)有任何規(guī)律可循24、在人工智能的模型評(píng)估中,需要選擇合適的指標(biāo)來(lái)衡量模型的性能。假設(shè)一個(gè)圖像分類模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,正確的是:()A.準(zhǔn)確率是唯一重要的評(píng)估指標(biāo),其他指標(biāo)如召回率和F1值都不重要B.對(duì)于不平衡的數(shù)據(jù)集,準(zhǔn)確率可能會(huì)產(chǎn)生誤導(dǎo),應(yīng)該使用更合適的指標(biāo)如召回率和F1值C.模型評(píng)估指標(biāo)只與模型的架構(gòu)有關(guān),與數(shù)據(jù)分布無(wú)關(guān)D.選擇評(píng)估指標(biāo)時(shí)不需要考慮具體的應(yīng)用場(chǎng)景和需求25、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)要評(píng)估一個(gè)深度學(xué)習(xí)模型在乳腺X光影像診斷中的性能,以下哪個(gè)指標(biāo)是最重要的?()A.準(zhǔn)確率B.召回率C.F1值D.特異性26、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù),能夠利用已有的知識(shí)和模型來(lái)解決新的問(wèn)題。假設(shè)我們已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個(gè)新的、但相關(guān)的圖像分類任務(wù)。以下關(guān)于遷移學(xué)習(xí)的說(shuō)法,哪一項(xiàng)是正確的?()A.可以直接使用原模型的參數(shù),無(wú)需任何調(diào)整B.只需要對(duì)模型的最后幾層進(jìn)行重新訓(xùn)練C.遷移學(xué)習(xí)一定能提高新任務(wù)的性能D.原模型的架構(gòu)和新任務(wù)必須完全相同27、人工智能在醫(yī)療影像診斷中的應(yīng)用不斷發(fā)展。假設(shè)一個(gè)醫(yī)院要引入人工智能輔助診斷系統(tǒng)來(lái)檢測(cè)癌癥。以下關(guān)于該應(yīng)用的描述,哪一項(xiàng)是錯(cuò)誤的?()A.能夠提高診斷的準(zhǔn)確性和效率,減少漏診和誤診的情況B.可以與醫(yī)生的經(jīng)驗(yàn)和判斷相結(jié)合,提供更全面的診斷依據(jù)C.人工智能診斷系統(tǒng)可以完全取代病理醫(yī)生的工作,獨(dú)立做出診斷結(jié)論D.需要經(jīng)過(guò)嚴(yán)格的臨床試驗(yàn)和驗(yàn)證,確保其安全性和有效性28、假設(shè)要開(kāi)發(fā)一個(gè)能夠在復(fù)雜的商業(yè)環(huán)境中進(jìn)行智能決策支持的人工智能系統(tǒng),例如投資決策或市場(chǎng)策略制定,以下哪種技術(shù)和知識(shí)的融合可能是必要的?()A.數(shù)據(jù)分析和領(lǐng)域?qū)<抑R(shí)B.機(jī)器學(xué)習(xí)算法和經(jīng)濟(jì)學(xué)原理C.深度學(xué)習(xí)模型和管理學(xué)理論D.以上都是29、假設(shè)要開(kāi)發(fā)一個(gè)能夠在虛擬環(huán)境中進(jìn)行自主探索和學(xué)習(xí)的人工智能體,例如在游戲中不斷提升能力,以下哪種學(xué)習(xí)機(jī)制和策略可能是關(guān)鍵的?()A.無(wú)監(jiān)督學(xué)習(xí)B.有監(jiān)督學(xué)習(xí)C.強(qiáng)化學(xué)習(xí)D.以上都是30、人工智能中的強(qiáng)化學(xué)習(xí)算法可以分為基于值函數(shù)的方法和基于策略的方法。以下關(guān)于這兩種方法的描述,不正確的是()A.基于值函數(shù)的方法通過(guò)估計(jì)狀態(tài)值或動(dòng)作值來(lái)選擇最優(yōu)動(dòng)作B.基于策略的方法直接學(xué)習(xí)策略函數(shù),輸出動(dòng)作的概率分布C.基于值函數(shù)的方法和基于策略的方法不能結(jié)合使用,只能選擇其一D.這兩種方法各有優(yōu)缺點(diǎn),在不同的應(yīng)用場(chǎng)景中表現(xiàn)不同二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用Python的Keras庫(kù),構(gòu)建一個(gè)基于強(qiáng)化學(xué)習(xí)的機(jī)器人避障模型。在模擬環(huán)境中訓(xùn)練機(jī)器人學(xué)會(huì)避開(kāi)障礙物,到達(dá)指定目標(biāo)位置。2、(本題5分)運(yùn)用Python中的Scikit-learn庫(kù),實(shí)現(xiàn)線性判別分析(LDA)算法對(duì)數(shù)據(jù)進(jìn)行分類和降維,通過(guò)可視化展示分類效果。3、(本題5分)運(yùn)用Python中的Keras庫(kù),搭建一個(gè)基于強(qiáng)化學(xué)習(xí)的金融投資策略優(yōu)化模型,提高投資回報(bào)率。4、(本題5分)使用深度學(xué)習(xí)框架構(gòu)建一個(gè)卷積神經(jīng)網(wǎng)絡(luò),對(duì)CIFAR-10圖像數(shù)據(jù)集進(jìn)行分類訓(xùn)練,觀察模型的準(zhǔn)確率和收斂情況。5、(本題5分)利用Python的OpenCV庫(kù),實(shí)現(xiàn)對(duì)圖像的模板匹
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度森林資源可持續(xù)開(kāi)發(fā)與木材購(gòu)銷合作協(xié)議4篇
- 2025版學(xué)校宿管員招聘、培訓(xùn)及考核合同2篇
- 二零二五年版在線教育平臺(tái)合同欺詐風(fēng)險(xiǎn)控制與賠償協(xié)議3篇
- 基于2025年度預(yù)算的科技創(chuàng)新平臺(tái)建設(shè)合同
- 2025個(gè)人勞動(dòng)合同示范文本及勞動(dòng)法解讀4篇
- 二零二五年度健康養(yǎng)老產(chǎn)業(yè)合作框架協(xié)議4篇
- 2025年陜西勞動(dòng)合同解除與終止操作規(guī)范及案例分析3篇
- 二零二五年度國(guó)際美食餐廳經(jīng)理聘用合同范本3篇
- 2025年度魚塘承包與農(nóng)業(yè)科技推廣合同4篇
- 2025版文化創(chuàng)意產(chǎn)業(yè)貸款擔(dān)保協(xié)議范本9篇
- 開(kāi)展課外讀物負(fù)面清單管理的具體實(shí)施舉措方案
- 2025年云南中煙工業(yè)限責(zé)任公司招聘420人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025-2030年中國(guó)洗衣液市場(chǎng)未來(lái)發(fā)展趨勢(shì)及前景調(diào)研分析報(bào)告
- 2024解析:第三章物態(tài)變化-基礎(chǔ)練(解析版)
- 北京市房屋租賃合同自行成交版北京市房屋租賃合同自行成交版
- 《AM聚丙烯酰胺》課件
- 系統(tǒng)動(dòng)力學(xué)課件與案例分析
- 《智能網(wǎng)聯(lián)汽車智能傳感器測(cè)試與裝調(diào)》電子教案
- 客戶分級(jí)管理(標(biāo)準(zhǔn)版)課件
- GB/T 32399-2024信息技術(shù)云計(jì)算參考架構(gòu)
- 人教版數(shù)學(xué)七年級(jí)下冊(cè)數(shù)據(jù)的收集整理與描述小結(jié)
評(píng)論
0/150
提交評(píng)論