版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁北京化工大學(xué)
《人工智能及應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的模型訓(xùn)練中,過擬合和欠擬合是常見的問題。假設(shè)正在訓(xùn)練一個(gè)用于預(yù)測房價(jià)的人工智能模型,以下關(guān)于過擬合和欠擬合的描述,正確的是:()A.過擬合是指模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)差,在新數(shù)據(jù)上表現(xiàn)好;欠擬合則相反B.模型越復(fù)雜,越不容易出現(xiàn)過擬合問題,因此應(yīng)該盡量增加模型的復(fù)雜度C.正則化技術(shù)可以有效地防止過擬合,而增加訓(xùn)練數(shù)據(jù)量可以解決欠擬合問題D.過擬合和欠擬合只與模型的架構(gòu)有關(guān),與數(shù)據(jù)和訓(xùn)練過程無關(guān)2、在深度學(xué)習(xí)中,“批量歸一化(BatchNormalization)”的主要作用是?()A.加速訓(xùn)練B.防止過擬合C.提高模型精度D.以上都是3、在人工智能的語音合成任務(wù)中,假設(shè)要生成自然流暢且富有情感的語音,以下關(guān)于模型訓(xùn)練的方法,哪一項(xiàng)是不正確的?()A.使用大量的語音數(shù)據(jù)進(jìn)行訓(xùn)練,包括不同的口音和情感B.引入情感標(biāo)簽,讓模型學(xué)習(xí)不同情感下的語音特征C.只訓(xùn)練模型生成單一的語音風(fēng)格,以保證一致性D.結(jié)合聲學(xué)模型和語言模型,提高語音合成的質(zhì)量4、人工智能在物流配送中的路徑規(guī)劃方面具有應(yīng)用潛力。假設(shè)要為快遞配送車輛規(guī)劃最優(yōu)路徑,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.考慮交通狀況、貨物重量和配送時(shí)間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時(shí)間內(nèi)找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會(huì)受到任何突發(fā)情況的影響D.實(shí)時(shí)更新路況信息,動(dòng)態(tài)調(diào)整配送路徑,提高配送效率5、知識(shí)圖譜是人工智能中用于表示知識(shí)和關(guān)系的一種技術(shù)。假設(shè)一個(gè)智能問答系統(tǒng)基于知識(shí)圖譜來回答用戶的問題。以下關(guān)于知識(shí)圖譜的描述,哪一項(xiàng)是錯(cuò)誤的?()A.知識(shí)圖譜將實(shí)體、關(guān)系和屬性以圖的形式組織起來,便于知識(shí)的表示和查詢B.可以通過從大量文本中自動(dòng)抽取信息來構(gòu)建知識(shí)圖譜C.知識(shí)圖譜中的知識(shí)是固定不變的,一旦構(gòu)建完成就無需更新D.結(jié)合自然語言處理技術(shù),能夠?qū)崿F(xiàn)基于知識(shí)圖譜的智能問答和推理6、人工智能中的強(qiáng)化學(xué)習(xí)算法可以用于訓(xùn)練機(jī)器人完成復(fù)雜的任務(wù)。假設(shè)一個(gè)機(jī)器人需要通過強(qiáng)化學(xué)習(xí)學(xué)會(huì)在不同地形上行走。以下關(guān)于強(qiáng)化學(xué)習(xí)訓(xùn)練機(jī)器人的描述,哪一項(xiàng)是不正確的?()A.機(jī)器人通過與環(huán)境的交互獲得獎(jiǎng)勵(lì)或懲罰,從而調(diào)整自己的動(dòng)作策略B.可以使用模擬環(huán)境進(jìn)行大量的訓(xùn)練,以減少在真實(shí)環(huán)境中的試驗(yàn)成本和風(fēng)險(xiǎn)C.強(qiáng)化學(xué)習(xí)訓(xùn)練出的機(jī)器人策略在不同的環(huán)境條件下都能保持最優(yōu)性能,無需進(jìn)一步調(diào)整D.合理設(shè)計(jì)獎(jiǎng)勵(lì)函數(shù)對(duì)于引導(dǎo)機(jī)器人學(xué)習(xí)到期望的行為至關(guān)重要7、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像生成和數(shù)據(jù)增強(qiáng)等方面表現(xiàn)出色。假設(shè)要使用GAN生成逼真的人臉圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN的訓(xùn)練過程非常穩(wěn)定,不會(huì)出現(xiàn)模式崩潰等問題B.生成器和判別器的能力不需要平衡,只要其中一個(gè)強(qiáng)大就能生成好的圖像C.GAN可以通過不斷的對(duì)抗訓(xùn)練,學(xué)習(xí)到真實(shí)數(shù)據(jù)的分布,從而生成逼真的新樣本D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域的數(shù)據(jù)生成8、在人工智能的強(qiáng)化學(xué)習(xí)中,探索與利用的平衡是一個(gè)關(guān)鍵問題。假設(shè)一個(gè)智能體在一個(gè)未知的環(huán)境中學(xué)習(xí),既要充分探索新的策略,又要利用已有的有效策略。以下哪種策略在平衡探索與利用方面表現(xiàn)較好?()A.ε-貪心策略B.基于置信上限的策略C.隨機(jī)策略D.固定策略9、在人工智能的自然語言處理領(lǐng)域中,當(dāng)需要開發(fā)一個(gè)能夠準(zhǔn)確理解和生成人類語言的智能系統(tǒng),以用于智能客服回答各種復(fù)雜的問題時(shí),以下哪種技術(shù)或方法通常是關(guān)鍵的基礎(chǔ)?()A.詞法分析B.句法分析C.語義理解D.語用分析10、在人工智能的圖像分割任務(wù)中,假設(shè)要將一幅圖像中的不同物體準(zhǔn)確地分割出來,以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的圖像分割方法簡單快速,但對(duì)復(fù)雜圖像的效果不佳B.基于區(qū)域的圖像分割方法能夠處理具有相似特征的區(qū)域,但容易出現(xiàn)過度分割C.基于邊緣檢測的圖像分割方法能夠準(zhǔn)確地找到物體的邊緣,但對(duì)噪聲敏感D.以上圖像分割方法各有優(yōu)缺點(diǎn),常常結(jié)合使用以提高分割效果11、人工智能在智能推薦系統(tǒng)中發(fā)揮著關(guān)鍵作用。假設(shè)一個(gè)電商平臺(tái)要利用人工智能為用戶提供個(gè)性化推薦,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.通過分析用戶的瀏覽歷史、購買行為等數(shù)據(jù),了解用戶的興趣偏好B.利用協(xié)同過濾算法可以找到與目標(biāo)用戶相似的其他用戶,進(jìn)行推薦C.深度學(xué)習(xí)模型能夠捕捉復(fù)雜的用戶行為模式,提供更精準(zhǔn)的推薦D.智能推薦系統(tǒng)能夠完全滿足用戶的所有需求,不需要用戶進(jìn)一步篩選和選擇12、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像生成、數(shù)據(jù)增強(qiáng)等方面表現(xiàn)出色。假設(shè)要使用GAN生成逼真的藝術(shù)圖像,以下關(guān)于GAN訓(xùn)練過程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.生成器試圖生成逼真的圖像來欺騙判別器,判別器則努力區(qū)分真實(shí)圖像和生成的圖像B.訓(xùn)練過程中,生成器和判別器的性能會(huì)交替提升,直到達(dá)到平衡C.一旦GAN訓(xùn)練完成,生成器就能夠獨(dú)立生成高質(zhì)量的圖像,無需判別器的參與D.調(diào)整生成器和判別器的網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù),可以影響生成圖像的質(zhì)量和多樣性13、在人工智能的發(fā)展中,倫理和社會(huì)問題日益受到關(guān)注。假設(shè)一個(gè)城市正在考慮廣泛部署人工智能監(jiān)控系統(tǒng),以下關(guān)于人工智能倫理的描述,正確的是:()A.只要人工智能系統(tǒng)能夠提高安全性,就無需考慮其可能對(duì)個(gè)人隱私造成的侵犯B.在部署人工智能系統(tǒng)時(shí),不需要考慮公平性和透明度,只要結(jié)果有效就行C.應(yīng)該在開發(fā)和使用人工智能技術(shù)時(shí),遵循倫理原則,制定相關(guān)法規(guī)和政策,以確保其有益和無害的應(yīng)用D.人工智能的倫理問題是次要的,技術(shù)發(fā)展才是關(guān)鍵,倫理可以在后期考慮14、深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類等任務(wù)中取得了顯著成果。假設(shè)要使用CNN對(duì)大量的動(dòng)物圖片進(jìn)行分類。以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項(xiàng)是不正確的?()A.卷積層通過卷積操作提取圖像的局部特征B.池化層用于減少特征圖的尺寸,降低計(jì)算量,同時(shí)保留主要特征C.隨著網(wǎng)絡(luò)層數(shù)的增加,CNN的性能一定會(huì)不斷提高D.可以通過調(diào)整卷積核的大小、數(shù)量和網(wǎng)絡(luò)結(jié)構(gòu)來優(yōu)化CNN的性能15、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)智能體在探索環(huán)境時(shí)面臨高風(fēng)險(xiǎn)的動(dòng)作選擇,以下哪種策略能夠平衡探索和利用,以實(shí)現(xiàn)更好的學(xué)習(xí)效果?()A.ε-貪心策略,以一定概率隨機(jī)選擇動(dòng)作B.始終選擇最優(yōu)動(dòng)作,不進(jìn)行探索C.隨機(jī)選擇動(dòng)作,不考慮之前的經(jīng)驗(yàn)D.只在初始階段進(jìn)行探索,之后完全利用16、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類型的數(shù)據(jù),如圖像、文本和音頻。假設(shè)要開發(fā)一個(gè)能夠同時(shí)理解圖像和文本內(nèi)容的系統(tǒng),以下哪個(gè)挑戰(zhàn)是最突出的?()A.數(shù)據(jù)的標(biāo)注和對(duì)齊B.模型的訓(xùn)練效率C.不同模態(tài)數(shù)據(jù)的特征提取D.模型的可擴(kuò)展性17、在人工智能的語音處理領(lǐng)域,語音合成技術(shù)旨在生成自然流暢的人類語音。假設(shè)要開發(fā)一個(gè)能夠?yàn)橛新曌x物生成逼真語音的系統(tǒng),需要考慮語音的韻律、語調(diào)等因素。以下哪種語音合成方法在生成高質(zhì)量、富有表現(xiàn)力的語音方面表現(xiàn)更為突出?()A.拼接式語音合成B.參數(shù)式語音合成C.基于深度學(xué)習(xí)的端到端語音合成D.基于規(guī)則的語音合成18、在人工智能的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的腫瘤區(qū)域準(zhǔn)確分割出來,以下關(guān)于選擇分割算法的考慮,哪一項(xiàng)是最關(guān)鍵的?()A.算法的計(jì)算復(fù)雜度,以確保能夠快速處理大量圖像B.算法在其他領(lǐng)域的應(yīng)用效果,而不是針對(duì)醫(yī)學(xué)圖像的特定性能C.算法是否能夠利用多模態(tài)的醫(yī)學(xué)圖像數(shù)據(jù),如CT、MRI等D.算法是否具有漂亮的可視化效果,而不是分割的準(zhǔn)確性19、在人工智能的知識(shí)表示方法中,語義網(wǎng)絡(luò)和框架表示是常見的方式。假設(shè)我們要構(gòu)建一個(gè)關(guān)于動(dòng)物分類的知識(shí)系統(tǒng),以下關(guān)于這兩種表示方法的說法,哪一項(xiàng)是正確的?()A.語義網(wǎng)絡(luò)更適合表示結(jié)構(gòu)化的、層次分明的知識(shí)B.框架表示難以處理知識(shí)的不確定性和模糊性C.語義網(wǎng)絡(luò)難以表達(dá)復(fù)雜的對(duì)象及其關(guān)系D.框架表示在知識(shí)的擴(kuò)展和更新方面較為困難20、人工智能中的強(qiáng)化學(xué)習(xí)在機(jī)器人控制領(lǐng)域有重要應(yīng)用。假設(shè)一個(gè)機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì),哪一項(xiàng)是最需要仔細(xì)考慮的?()A.只根據(jù)機(jī)器人是否到達(dá)目標(biāo)位置給予獎(jiǎng)勵(lì)B.綜合考慮機(jī)器人的行走速度、穩(wěn)定性和能量消耗等因素給予獎(jiǎng)勵(lì)C.給予固定的獎(jiǎng)勵(lì)值,不考慮機(jī)器人的表現(xiàn)D.隨機(jī)給予獎(jiǎng)勵(lì),增加學(xué)習(xí)的不確定性二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋層次聚類算法的工作原理。2、(本題5分)說明人工智能在質(zhì)量改進(jìn)和持續(xù)優(yōu)化中的策略。3、(本題5分)解釋隨機(jī)森林算法的特點(diǎn)。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)考察一個(gè)基于人工智能的智能繪畫比賽評(píng)審輔助系統(tǒng),討論其如何輔助評(píng)委進(jìn)行評(píng)審工作。2、(本題5分)考察一個(gè)基于人工智能的智能繪畫人才職業(yè)規(guī)劃系統(tǒng),討論其如何為繪畫人才規(guī)劃職業(yè)道路。3、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能書法作品消費(fèi)者評(píng)價(jià)分析系統(tǒng),探討其如何分析消費(fèi)者對(duì)書法作品的評(píng)價(jià)。4、(本題5分)以某智能民間藝術(shù)教育課程設(shè)計(jì)系統(tǒng)為例,探討人工智能在課程內(nèi)容和教學(xué)方法方面的創(chuàng)新。5、(本題5分)研究一個(gè)利用人工智能進(jìn)行魔術(shù)效果設(shè)計(jì)的案
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年餐飲設(shè)備租賃協(xié)議詳細(xì)示例版
- 電子制造業(yè)薪酬體系優(yōu)化
- 演出服裝租賃合同模板
- 教室租賃合同
- 美妝店店長聘用合同樣本
- 建筑音響安裝合同文件
- 健身房宿舍管理員招聘協(xié)議
- 鄉(xiāng)村公路升級(jí)級(jí)配碎石供應(yīng)合同
- 橋梁夜景亮化施工協(xié)議
- 2024年網(wǎng)絡(luò)云服務(wù)租賃合同(含帶寬保障)
- 二級(jí)公立醫(yī)院績效考核三級(jí)手術(shù)目錄(2020版)
- 第五章_油樣分析
- [理學(xué)]無機(jī)及其分析化學(xué) 課后答案
- 氯堿生產(chǎn)企業(yè)安全標(biāo)準(zhǔn)化實(shí)施培訓(xùn)指南
- 活套法蘭計(jì)算表
- 年產(chǎn)十萬噸苯乙烯工藝設(shè)計(jì)
- 儲(chǔ)罐受限空間作業(yè)方案DOC
- 壓力容器耐壓試驗(yàn)
- 課程設(shè)計(jì)---年產(chǎn)5.6萬噸乙醇精餾塔的設(shè)計(jì)
- 部編本小學(xué)五年級(jí)上冊(cè)語文期末考試(選擇題)專項(xiàng)訓(xùn)練題及答案
- 化工生產(chǎn)車間人員配置方案(精編版)
評(píng)論
0/150
提交評(píng)論