版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)北京師范大學(xué)《機(jī)器學(xué)習(xí)與深度學(xué)習(xí)》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在機(jī)器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)是一種常見(jiàn)的學(xué)習(xí)方式。假設(shè)我們要使用監(jiān)督學(xué)習(xí)算法來(lái)預(yù)測(cè)房?jī)r(jià),給定了大量的房屋特征(如面積、房間數(shù)量、地理位置等)以及對(duì)應(yīng)的房?jī)r(jià)數(shù)據(jù)。以下關(guān)于監(jiān)督學(xué)習(xí)在這個(gè)任務(wù)中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以使用線性回歸算法,建立房屋特征與房?jī)r(jià)之間的線性關(guān)系模型B.決策樹(shù)算法可以根據(jù)房屋特征的不同取值來(lái)劃分決策節(jié)點(diǎn),最終預(yù)測(cè)房?jī)r(jià)C.支持向量機(jī)通過(guò)尋找一個(gè)最優(yōu)的超平面來(lái)對(duì)房屋數(shù)據(jù)進(jìn)行分類(lèi),從而預(yù)測(cè)房?jī)r(jià)D.無(wú)監(jiān)督學(xué)習(xí)算法如K-Means聚類(lèi)算法可以直接用于房?jī)r(jià)的預(yù)測(cè),無(wú)需對(duì)數(shù)據(jù)進(jìn)行標(biāo)注2、在一個(gè)圖像生成的任務(wù)中,需要根據(jù)給定的描述或條件生成逼真的圖像。考慮到生成圖像的質(zhì)量、多樣性和創(chuàng)新性。以下哪種生成模型可能是最有潛力的?()A.生成對(duì)抗網(wǎng)絡(luò)(GAN),通過(guò)對(duì)抗訓(xùn)練生成逼真的圖像,但可能存在模式崩潰和訓(xùn)練不穩(wěn)定的問(wèn)題B.變分自編碼器(VAE),能夠?qū)W習(xí)數(shù)據(jù)的潛在分布并生成新樣本,但生成的圖像可能較模糊C.自回歸模型,如PixelCNN,逐像素生成圖像,保證了局部一致性,但生成速度較慢D.擴(kuò)散模型,通過(guò)逐步去噪生成圖像,具有較高的質(zhì)量和多樣性,但計(jì)算成本較高3、在強(qiáng)化學(xué)習(xí)中,智能體通過(guò)與環(huán)境交互來(lái)學(xué)習(xí)最優(yōu)策略。如果智能體在某個(gè)狀態(tài)下采取的行動(dòng)總是導(dǎo)致低獎(jiǎng)勵(lì),它應(yīng)該()A.繼續(xù)采取相同的行動(dòng),希望情況會(huì)改善B.隨機(jī)選擇其他行動(dòng)C.根據(jù)策略網(wǎng)絡(luò)的輸出選擇行動(dòng)D.調(diào)整策略以避免采取該行動(dòng)4、在強(qiáng)化學(xué)習(xí)中,智能體通過(guò)與環(huán)境進(jìn)行交互來(lái)學(xué)習(xí)最優(yōu)策略。假設(shè)一個(gè)機(jī)器人需要在復(fù)雜的環(huán)境中找到通往目標(biāo)的最佳路徑,并且在途中會(huì)遇到各種障礙和獎(jiǎng)勵(lì)。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法可能更適合解決這個(gè)問(wèn)題?()A.Q-learning算法,通過(guò)估計(jì)狀態(tài)-動(dòng)作值函數(shù)來(lái)選擇動(dòng)作B.SARSA算法,基于當(dāng)前策略進(jìn)行策略評(píng)估和改進(jìn)C.策略梯度算法,直接優(yōu)化策略的參數(shù)D.以上算法都不適合,需要使用專(zhuān)門(mén)的路徑規(guī)劃算法5、在進(jìn)行特征工程時(shí),需要對(duì)連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時(shí)減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類(lèi)的離散化D.基于決策樹(shù)的離散化6、強(qiáng)化學(xué)習(xí)中的智能體通過(guò)與環(huán)境的交互來(lái)學(xué)習(xí)最優(yōu)策略。以下關(guān)于強(qiáng)化學(xué)習(xí)的說(shuō)法中,錯(cuò)誤的是:強(qiáng)化學(xué)習(xí)的目標(biāo)是最大化累計(jì)獎(jiǎng)勵(lì)。智能體根據(jù)當(dāng)前狀態(tài)選擇動(dòng)作,環(huán)境根據(jù)動(dòng)作反饋新的狀態(tài)和獎(jiǎng)勵(lì)。那么,下列關(guān)于強(qiáng)化學(xué)習(xí)的說(shuō)法錯(cuò)誤的是()A.Q學(xué)習(xí)是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法B.策略梯度算法是一種基于策略的強(qiáng)化學(xué)習(xí)算法C.強(qiáng)化學(xué)習(xí)算法只適用于離散動(dòng)作空間,對(duì)于連續(xù)動(dòng)作空間不適用D.強(qiáng)化學(xué)習(xí)可以應(yīng)用于機(jī)器人控制、游戲等領(lǐng)域7、假設(shè)要使用機(jī)器學(xué)習(xí)算法來(lái)預(yù)測(cè)房?jī)r(jià)。數(shù)據(jù)集包含了房屋的面積、位置、房間數(shù)量等特征。如果特征之間存在非線性關(guān)系,以下哪種模型可能更適合?()A.線性回歸模型B.決策樹(shù)回歸模型C.支持向量回歸模型D.以上模型都可能適用8、在使用梯度下降算法優(yōu)化模型參數(shù)時(shí),如果學(xué)習(xí)率設(shè)置過(guò)大,可能會(huì)導(dǎo)致以下哪種情況()A.收斂速度加快B.陷入局部最優(yōu)解C.模型無(wú)法收斂D.以上情況都不會(huì)發(fā)生9、在進(jìn)行機(jī)器學(xué)習(xí)模型評(píng)估時(shí),除了準(zhǔn)確性等常見(jiàn)指標(biāo)外,還可以使用混淆矩陣來(lái)更詳細(xì)地分析模型的性能。對(duì)于一個(gè)二分類(lèi)問(wèn)題,混淆矩陣包含了真陽(yáng)性(TP)、真陰性(TN)、假陽(yáng)性(FP)和假陰性(FN)等信息。以下哪個(gè)指標(biāo)可以通過(guò)混淆矩陣計(jì)算得到,并且對(duì)于不平衡數(shù)據(jù)集的評(píng)估較為有效?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)10、假設(shè)要預(yù)測(cè)一個(gè)時(shí)間序列數(shù)據(jù)中的突然變化點(diǎn),以下哪種方法可能是最合適的?()A.滑動(dòng)窗口分析,通過(guò)比較相鄰窗口的數(shù)據(jù)差異來(lái)檢測(cè)變化,但窗口大小選擇困難B.基于統(tǒng)計(jì)的假設(shè)檢驗(yàn),如t檢驗(yàn)或方差分析,但對(duì)數(shù)據(jù)分布有要求C.變點(diǎn)檢測(cè)算法,如CUSUM或Pettitt檢驗(yàn),專(zhuān)門(mén)用于檢測(cè)變化點(diǎn),但可能對(duì)噪聲敏感D.深度學(xué)習(xí)中的異常檢測(cè)模型,能夠自動(dòng)學(xué)習(xí)變化模式,但需要大量數(shù)據(jù)訓(xùn)練11、在使用樸素貝葉斯算法進(jìn)行分類(lèi)時(shí),以下關(guān)于樸素貝葉斯的假設(shè)和特點(diǎn),哪一項(xiàng)是不正確的?()A.假設(shè)特征之間相互獨(dú)立,簡(jiǎn)化了概率計(jì)算B.對(duì)于連續(xù)型特征,通常需要先進(jìn)行離散化處理C.樸素貝葉斯算法對(duì)輸入數(shù)據(jù)的分布沒(méi)有要求,適用于各種類(lèi)型的數(shù)據(jù)D.樸素貝葉斯算法在處理高維度數(shù)據(jù)時(shí)性能較差,容易出現(xiàn)過(guò)擬合12、在使用隨機(jī)森林算法進(jìn)行分類(lèi)任務(wù)時(shí),以下關(guān)于隨機(jī)森林特點(diǎn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.隨機(jī)森林是由多個(gè)決策樹(shù)組成的集成模型,通過(guò)投票來(lái)決定最終的分類(lèi)結(jié)果B.隨機(jī)森林在訓(xùn)練過(guò)程中對(duì)特征進(jìn)行隨機(jī)抽樣,增加了模型的隨機(jī)性和多樣性C.隨機(jī)森林對(duì)于處理高維度數(shù)據(jù)和缺失值具有較好的魯棒性D.隨機(jī)森林的訓(xùn)練速度比單個(gè)決策樹(shù)慢,因?yàn)樾枰獦?gòu)建多個(gè)決策樹(shù)13、在一個(gè)聚類(lèi)問(wèn)題中,需要將一組數(shù)據(jù)點(diǎn)劃分到不同的簇中,使得同一簇內(nèi)的數(shù)據(jù)點(diǎn)相似度較高,不同簇之間的數(shù)據(jù)點(diǎn)相似度較低。假設(shè)我們使用K-Means算法進(jìn)行聚類(lèi),以下關(guān)于K-Means算法的初始化步驟,哪一項(xiàng)是正確的?()A.隨機(jī)選擇K個(gè)數(shù)據(jù)點(diǎn)作為初始聚類(lèi)中心B.選擇數(shù)據(jù)集中前K個(gè)數(shù)據(jù)點(diǎn)作為初始聚類(lèi)中心C.計(jì)算數(shù)據(jù)點(diǎn)的均值作為初始聚類(lèi)中心D.以上方法都可以,對(duì)最終聚類(lèi)結(jié)果沒(méi)有影響14、在一個(gè)醫(yī)療診斷項(xiàng)目中,我們希望利用機(jī)器學(xué)習(xí)算法來(lái)預(yù)測(cè)患者是否患有某種疾病。收集到的數(shù)據(jù)集包含患者的各種生理指標(biāo)、病史等信息。在選擇合適的機(jī)器學(xué)習(xí)算法時(shí),需要考慮多個(gè)因素,如數(shù)據(jù)的規(guī)模、特征的數(shù)量、數(shù)據(jù)的平衡性等。如果數(shù)據(jù)量較大,特征維度較高,且存在一定的噪聲,以下哪種算法可能是最優(yōu)選擇?()A.邏輯回歸算法,簡(jiǎn)單且易于解釋B.決策樹(shù)算法,能夠處理非線性關(guān)系C.支持向量機(jī)算法,在小樣本數(shù)據(jù)上表現(xiàn)出色D.隨機(jī)森林算法,對(duì)噪聲和異常值具有較好的容忍性15、在構(gòu)建機(jī)器學(xué)習(xí)模型時(shí),選擇合適的正則化方法可以防止過(guò)擬合。假設(shè)我們正在訓(xùn)練一個(gè)邏輯回歸模型。以下關(guān)于正則化的描述,哪一項(xiàng)是錯(cuò)誤的?()A.L1正則化會(huì)使部分模型參數(shù)變?yōu)?,從而實(shí)現(xiàn)特征選擇B.L2正則化通過(guò)對(duì)模型參數(shù)的平方和進(jìn)行懲罰,使參數(shù)值變小C.正則化參數(shù)越大,對(duì)模型的約束越強(qiáng),可能導(dǎo)致模型欠擬合D.同時(shí)使用L1和L2正則化(ElasticNet)總是比單獨(dú)使用L1或L2正則化效果好16、在一個(gè)強(qiáng)化學(xué)習(xí)問(wèn)題中,如果環(huán)境的狀態(tài)空間非常大,以下哪種技術(shù)可以用于有效地表示和處理狀態(tài)?()A.函數(shù)逼近B.狀態(tài)聚類(lèi)C.狀態(tài)抽象D.以上技術(shù)都可以17、考慮一個(gè)情感分析任務(wù),判斷一段文本所表達(dá)的情感是積極、消極還是中性。在特征提取方面,可以使用詞袋模型、TF-IDF等方法。如果文本數(shù)據(jù)量較大,且包含豐富的語(yǔ)義信息,以下哪種特征提取方法可能表現(xiàn)更好?()A.詞袋模型,簡(jiǎn)單直觀,計(jì)算速度快B.TF-IDF,考慮了詞的頻率和文檔的分布C.基于深度學(xué)習(xí)的詞向量表示,能夠捕捉語(yǔ)義和上下文信息D.以上方法效果相同,取決于模型的復(fù)雜程度18、在一個(gè)圖像分類(lèi)任務(wù)中,如果需要快速進(jìn)行模型的訓(xùn)練和預(yù)測(cè),以下哪種輕量級(jí)模型架構(gòu)可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG19、欠擬合也是機(jī)器學(xué)習(xí)中需要關(guān)注的問(wèn)題。以下關(guān)于欠擬合的說(shuō)法中,錯(cuò)誤的是:欠擬合是指模型在訓(xùn)練數(shù)據(jù)和測(cè)試數(shù)據(jù)上的表現(xiàn)都不佳。欠擬合的原因可能是模型過(guò)于簡(jiǎn)單或者數(shù)據(jù)特征不足。那么,下列關(guān)于欠擬合的說(shuō)法錯(cuò)誤的是()A.增加模型的復(fù)雜度可以緩解欠擬合問(wèn)題B.收集更多的特征數(shù)據(jù)可以緩解欠擬合問(wèn)題C.欠擬合問(wèn)題比過(guò)擬合問(wèn)題更容易解決D.欠擬合只在小樣本數(shù)據(jù)集上出現(xiàn),大規(guī)模數(shù)據(jù)集不會(huì)出現(xiàn)欠擬合問(wèn)題20、在處理自然語(yǔ)言處理任務(wù)時(shí),詞嵌入(WordEmbedding)是一種常用的技術(shù)。假設(shè)我們要對(duì)一段文本進(jìn)行情感分析。以下關(guān)于詞嵌入的描述,哪一項(xiàng)是錯(cuò)誤的?()A.詞嵌入將單詞表示為低維實(shí)數(shù)向量,捕捉單詞之間的語(yǔ)義關(guān)系B.Word2Vec和GloVe是常見(jiàn)的詞嵌入模型,可以學(xué)習(xí)到單詞的分布式表示C.詞嵌入向量的維度通常是固定的,且不同單詞的向量維度必須相同D.詞嵌入可以直接用于文本分類(lèi)任務(wù),無(wú)需進(jìn)行進(jìn)一步的特征工程二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋機(jī)器學(xué)習(xí)在海洋生物學(xué)中的生態(tài)監(jiān)測(cè)。2、(本題5分)解釋如何在機(jī)器學(xué)習(xí)中處理不平衡的多標(biāo)簽分類(lèi)問(wèn)題。3、(本題5分)簡(jiǎn)述在智能交通系統(tǒng)中,機(jī)器學(xué)習(xí)的應(yīng)用。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)通過(guò)主成分分析降低圖像數(shù)據(jù)的維度,以加快處理速度。2、(本題5分)借助生物多樣性研究數(shù)據(jù)制
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度重型盤(pán)扣腳手架定制租賃與安全監(jiān)管服務(wù)合同4篇
- 二零二五年度國(guó)有企業(yè)員工招聘及培訓(xùn)服務(wù)合同
- 二零二五年度民政局婚姻登記處協(xié)議離婚書(shū)模板法律風(fēng)險(xiǎn)提示合同4篇
- 二零二五年度機(jī)動(dòng)車(chē)典當(dāng)質(zhì)押運(yùn)輸合同3篇
- 二零二五年度公路護(hù)欄施工勞務(wù)合同2025年版2篇
- 二零二五年度文化旅游景區(qū)農(nóng)民工就業(yè)扶持合同3篇
- 二零二五年度電商企業(yè)綠色包裝供貨合同模板2篇
- 二零二五年度木材進(jìn)口關(guān)稅減免及檢驗(yàn)檢疫服務(wù)合同3篇
- 2025年度家庭娛樂(lè)活動(dòng)策劃與組織服務(wù)合同范本4篇
- 2025年林地租賃合同(1500字附森林資源增值服務(wù))2篇
- 課題申報(bào)書(shū):GenAI賦能新質(zhì)人才培養(yǎng)的生成式學(xué)習(xí)設(shè)計(jì)研究
- 潤(rùn)滑油知識(shí)-液壓油
- 2024年江蘇省中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 駱駝祥子-(一)-劇本
- 全國(guó)醫(yī)院數(shù)量統(tǒng)計(jì)
- 《中國(guó)香文化》課件
- 2024年醫(yī)美行業(yè)社媒平臺(tái)人群趨勢(shì)洞察報(bào)告-醫(yī)美行業(yè)觀察星秀傳媒
- 第六次全國(guó)幽門(mén)螺桿菌感染處理共識(shí)報(bào)告-
- 天津市2023-2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 經(jīng)濟(jì)學(xué)的思維方式(第13版)
- 盤(pán)錦市重點(diǎn)中學(xué)2024年中考英語(yǔ)全真模擬試卷含答案
評(píng)論
0/150
提交評(píng)論