巢湖學(xué)院《機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
巢湖學(xué)院《機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
巢湖學(xué)院《機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
巢湖學(xué)院《機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專(zhuān)業(yè):姓名:學(xué)號(hào):凡年級(jí)專(zhuān)業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共1頁(yè)巢湖學(xué)院《機(jī)器學(xué)習(xí)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在機(jī)器學(xué)習(xí)中,降維是一種常見(jiàn)的操作,用于減少特征的數(shù)量。以下哪種降維方法是基于線性變換的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-SNED.以上都是2、機(jī)器學(xué)習(xí)在圖像識(shí)別領(lǐng)域也取得了巨大的成功。以下關(guān)于機(jī)器學(xué)習(xí)在圖像識(shí)別中的說(shuō)法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)可以用于圖像分類(lèi)、目標(biāo)檢測(cè)、圖像分割等任務(wù)。常見(jiàn)的圖像識(shí)別算法有卷積神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在圖像識(shí)別中的說(shuō)法錯(cuò)誤的是()A.卷積神經(jīng)網(wǎng)絡(luò)通過(guò)卷積層和池化層自動(dòng)學(xué)習(xí)圖像的特征表示B.支持向量機(jī)在圖像識(shí)別中的性能通常不如卷積神經(jīng)網(wǎng)絡(luò)C.圖像識(shí)別算法的性能主要取決于數(shù)據(jù)的質(zhì)量和數(shù)量,與算法本身關(guān)系不大D.機(jī)器學(xué)習(xí)在圖像識(shí)別中的應(yīng)用還面臨著一些挑戰(zhàn),如小樣本學(xué)習(xí)、對(duì)抗攻擊等3、假設(shè)要預(yù)測(cè)一個(gè)時(shí)間序列數(shù)據(jù)中的突然變化點(diǎn),以下哪種方法可能是最合適的?()A.滑動(dòng)窗口分析,通過(guò)比較相鄰窗口的數(shù)據(jù)差異來(lái)檢測(cè)變化,但窗口大小選擇困難B.基于統(tǒng)計(jì)的假設(shè)檢驗(yàn),如t檢驗(yàn)或方差分析,但對(duì)數(shù)據(jù)分布有要求C.變點(diǎn)檢測(cè)算法,如CUSUM或Pettitt檢驗(yàn),專(zhuān)門(mén)用于檢測(cè)變化點(diǎn),但可能對(duì)噪聲敏感D.深度學(xué)習(xí)中的異常檢測(cè)模型,能夠自動(dòng)學(xué)習(xí)變化模式,但需要大量數(shù)據(jù)訓(xùn)練4、在一個(gè)分類(lèi)問(wèn)題中,如果數(shù)據(jù)分布不均衡,以下哪種方法可以用于處理這種情況?()A.過(guò)采樣B.欠采樣C.生成對(duì)抗網(wǎng)絡(luò)(GAN)生成新樣本D.以上方法都可以5、在一個(gè)分類(lèi)問(wèn)題中,如果需要對(duì)新出現(xiàn)的類(lèi)別進(jìn)行快速適應(yīng)和學(xué)習(xí),以下哪種模型具有較好的靈活性?()A.在線學(xué)習(xí)模型B.增量學(xué)習(xí)模型C.遷移學(xué)習(xí)模型D.以上模型都可以6、假設(shè)要使用機(jī)器學(xué)習(xí)算法來(lái)預(yù)測(cè)房?jī)r(jià)。數(shù)據(jù)集包含了房屋的面積、位置、房間數(shù)量等特征。如果特征之間存在非線性關(guān)系,以下哪種模型可能更適合?()A.線性回歸模型B.決策樹(shù)回歸模型C.支持向量回歸模型D.以上模型都可能適用7、考慮一個(gè)回歸問(wèn)題,我們要預(yù)測(cè)房?jī)r(jià)。數(shù)據(jù)集包含了房屋的面積、房間數(shù)量、地理位置等特征以及對(duì)應(yīng)的房?jī)r(jià)。在選擇評(píng)估指標(biāo)來(lái)衡量模型的性能時(shí),需要綜合考慮模型的準(zhǔn)確性和誤差的性質(zhì)。以下哪個(gè)評(píng)估指標(biāo)不僅考慮了預(yù)測(cè)值與真實(shí)值的偏差,還考慮了偏差的平方?()A.平均絕對(duì)誤差(MAE)B.均方誤差(MSE)C.決定系數(shù)(R2)D.準(zhǔn)確率(Accuracy)8、在進(jìn)行機(jī)器學(xué)習(xí)模型評(píng)估時(shí),除了準(zhǔn)確性等常見(jiàn)指標(biāo)外,還可以使用混淆矩陣來(lái)更詳細(xì)地分析模型的性能。對(duì)于一個(gè)二分類(lèi)問(wèn)題,混淆矩陣包含了真陽(yáng)性(TP)、真陰性(TN)、假陽(yáng)性(FP)和假陰性(FN)等信息。以下哪個(gè)指標(biāo)可以通過(guò)混淆矩陣計(jì)算得到,并且對(duì)于不平衡數(shù)據(jù)集的評(píng)估較為有效?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)9、考慮一個(gè)時(shí)間序列預(yù)測(cè)問(wèn)題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項(xiàng)B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動(dòng)平均(SARIMA)模型D.以上都可以10、在一個(gè)分類(lèi)問(wèn)題中,如果數(shù)據(jù)集中存在多個(gè)類(lèi)別,且類(lèi)別之間存在層次結(jié)構(gòu),以下哪種方法可以考慮這種層次結(jié)構(gòu)?()A.多分類(lèi)邏輯回歸B.決策樹(shù)C.層次分類(lèi)算法D.支持向量機(jī)11、在機(jī)器學(xué)習(xí)中,對(duì)于一個(gè)分類(lèi)問(wèn)題,我們需要選擇合適的算法來(lái)提高預(yù)測(cè)準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線性關(guān)系,同時(shí)樣本數(shù)量相對(duì)較少。在這種情況下,以下哪種算法可能是一個(gè)較好的選擇?()A.邏輯回歸B.決策樹(shù)C.支持向量機(jī)D.樸素貝葉斯12、在一個(gè)情感分析任務(wù)中,需要同時(shí)考慮文本的語(yǔ)義和語(yǔ)法信息。以下哪種模型結(jié)構(gòu)可能是最有幫助的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN),能夠提取局部特征,但對(duì)序列信息處理較弱B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),擅長(zhǎng)處理序列數(shù)據(jù),但長(zhǎng)期依賴(lài)問(wèn)題較嚴(yán)重C.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),改進(jìn)了RNN的長(zhǎng)期記憶能力,但計(jì)算復(fù)雜度較高D.結(jié)合CNN和LSTM的混合模型,充分利用兩者的優(yōu)勢(shì)13、特征工程是機(jī)器學(xué)習(xí)中的重要環(huán)節(jié)。以下關(guān)于特征工程的說(shuō)法中,錯(cuò)誤的是:特征工程包括特征提取、特征選擇和特征轉(zhuǎn)換等步驟。目的是從原始數(shù)據(jù)中提取出有效的特征,提高模型的性能。那么,下列關(guān)于特征工程的說(shuō)法錯(cuò)誤的是()A.特征提取是從原始數(shù)據(jù)中自動(dòng)學(xué)習(xí)特征表示的過(guò)程B.特征選擇是從眾多特征中選擇出對(duì)模型性能有重要影響的特征C.特征轉(zhuǎn)換是將原始特征進(jìn)行變換,以提高模型的性能D.特征工程只在傳統(tǒng)的機(jī)器學(xué)習(xí)算法中需要,深度學(xué)習(xí)算法不需要進(jìn)行特征工程14、假設(shè)正在開(kāi)發(fā)一個(gè)用于推薦系統(tǒng)的深度學(xué)習(xí)模型,需要考慮用戶的短期興趣和長(zhǎng)期興趣。以下哪種模型結(jié)構(gòu)可以同時(shí)捕捉這兩種興趣?()A.注意力機(jī)制與循環(huán)神經(jīng)網(wǎng)絡(luò)的結(jié)合B.多層感知機(jī)與卷積神經(jīng)網(wǎng)絡(luò)的組合C.生成對(duì)抗網(wǎng)絡(luò)與自編碼器的融合D.以上模型都有可能15、假設(shè)正在開(kāi)發(fā)一個(gè)用于情感分析的深度學(xué)習(xí)模型,需要對(duì)模型進(jìn)行優(yōu)化。以下哪種優(yōu)化算法在深度學(xué)習(xí)中被廣泛使用?()A.隨機(jī)梯度下降(SGD)B.自適應(yīng)矩估計(jì)(Adam)C.牛頓法D.共軛梯度法16、在一個(gè)監(jiān)督學(xué)習(xí)問(wèn)題中,我們需要評(píng)估模型在新數(shù)據(jù)上的泛化能力。如果數(shù)據(jù)集較小且存在類(lèi)別不平衡的情況,以下哪種評(píng)估指標(biāo)需要特別謹(jǐn)慎地使用?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)17、假設(shè)正在進(jìn)行一個(gè)特征選擇任務(wù),需要從大量的特征中選擇最具代表性和區(qū)分性的特征。以下哪種特征選擇方法基于特征與目標(biāo)變量之間的相關(guān)性?()A.過(guò)濾式方法B.包裹式方法C.嵌入式方法D.以上方法都可以18、想象一個(gè)圖像分類(lèi)的競(jìng)賽,要求在有限的計(jì)算資源和時(shí)間內(nèi)達(dá)到最高的準(zhǔn)確率。以下哪種優(yōu)化策略可能是最關(guān)鍵的?()A.數(shù)據(jù)增強(qiáng),通過(guò)對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換增加數(shù)據(jù)量,但可能引入噪聲B.超參數(shù)調(diào)優(yōu),找到模型的最優(yōu)參數(shù)組合,但搜索空間大且耗時(shí)C.模型壓縮,減少模型參數(shù)和計(jì)算量,如剪枝和量化,但可能損失一定精度D.集成學(xué)習(xí),組合多個(gè)模型的預(yù)測(cè)結(jié)果,提高穩(wěn)定性和準(zhǔn)確率,但訓(xùn)練成本高19、在一個(gè)回歸問(wèn)題中,如果需要考慮多個(gè)輸出變量之間的相關(guān)性,以下哪種模型可能更適合?()A.多元線性回歸B.向量自回歸(VAR)C.多任務(wù)學(xué)習(xí)模型D.以上模型都可以20、在一個(gè)聚類(lèi)問(wèn)題中,需要將一組數(shù)據(jù)點(diǎn)劃分到不同的簇中,使得同一簇內(nèi)的數(shù)據(jù)點(diǎn)相似度較高,不同簇之間的數(shù)據(jù)點(diǎn)相似度較低。假設(shè)我們使用K-Means算法進(jìn)行聚類(lèi),以下關(guān)于K-Means算法的初始化步驟,哪一項(xiàng)是正確的?()A.隨機(jī)選擇K個(gè)數(shù)據(jù)點(diǎn)作為初始聚類(lèi)中心B.選擇數(shù)據(jù)集中前K個(gè)數(shù)據(jù)點(diǎn)作為初始聚類(lèi)中心C.計(jì)算數(shù)據(jù)點(diǎn)的均值作為初始聚類(lèi)中心D.以上方法都可以,對(duì)最終聚類(lèi)結(jié)果沒(méi)有影響二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)。2、(本題5分)什么是門(mén)控循環(huán)單元(GRU)?它與LSTM的區(qū)別是什么?3、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行冰川變化監(jiān)測(cè)。4、(本題5分)說(shuō)明機(jī)器學(xué)習(xí)在生物物理學(xué)中的模型構(gòu)建。5、(本題5分)解釋在深度學(xué)習(xí)中,激活函數(shù)的作用。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)基于RNN對(duì)文本的上下文相關(guān)性進(jìn)行評(píng)估。2、(本題5分)通過(guò)婦產(chǎn)科學(xué)數(shù)據(jù)保障母嬰健康和處理婦產(chǎn)科疾病。3、(本題5分)計(jì)算一組特征的重要性得分,確定對(duì)模型預(yù)測(cè)最有影響的特征。4、(本題5分)利用隨機(jī)森林模型對(duì)用戶對(duì)游戲的喜好進(jìn)行預(yù)測(cè)。5、(本題5分)利用口腔正畸學(xué)數(shù)據(jù)設(shè)計(jì)正畸治療方案。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)探討

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論