廣東省深圳高級中學2025屆高考考前模擬數學試題含解析_第1頁
廣東省深圳高級中學2025屆高考考前模擬數學試題含解析_第2頁
廣東省深圳高級中學2025屆高考考前模擬數學試題含解析_第3頁
廣東省深圳高級中學2025屆高考考前模擬數學試題含解析_第4頁
廣東省深圳高級中學2025屆高考考前模擬數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省深圳高級中學2025屆高考考前模擬數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個空間幾何體的正視圖是長為4,寬為的長方形,側視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.63.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)4.設集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個 B.4個 C.5個 D.6個5.tan570°=()A. B.- C. D.6.已知函數,若曲線在點處的切線方程為,則實數的取值為()A.-2 B.-1 C.1 D.27.已知復數,則()A. B. C. D.28.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.9.復數的實部與虛部相等,其中為虛部單位,則實數()A.3 B. C. D.10.某中學有高中生人,初中生人為了解該校學生自主鍛煉的時間,采用分層抽樣的方法從高生和初中生中抽取一個容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.11.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.12.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)14.已知數列滿足,則________.15.設,則除以的余數是______.16.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長棱的長度是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某公園準備在一圓形水池里設置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心為的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞.(1)若當時,,求此時的值;(2)設,且.(i)試將表示為的函數,并求出的取值范圍;(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.18.(12分)已知函數.(1)若,求證:.(2)討論函數的極值;(3)是否存在實數,使得不等式在上恒成立?若存在,求出的最小值;若不存在,請說明理由.19.(12分)移動支付(支付寶及微信支付)已經漸漸成為人們購物消費的一種支付方式,為調查市民使用移動支付的年齡結構,隨機對100位市民做問卷調查得到列聯表如下:(1)將上列聯表補充完整,并請說明在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡是否有關?(2)在使用移動支付的人群中采用分層抽樣的方式抽取10人做進一步的問卷調查,從這10人隨機中選出3人頒發(fā)參與獎勵,設年齡都低于35歲(含35歲)的人數為,求的分布列及期望.(參考公式:(其中)20.(12分)設函數,是函數的導數.(1)若,證明在區(qū)間上沒有零點;(2)在上恒成立,求的取值范圍.21.(12分)已知.(1)當時,求不等式的解集;(2)若,,證明:.22.(10分)在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.(1)求證:平面;(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.【點睛】本題考查三視圖,考查棱柱的體積.解題關鍵是由三視圖不愿出原幾何體.2、C【解析】

根據題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當且僅當時取“=”號.

答案:C【點睛】本題考查基本不等式的應用,“1”的應用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是首先要判斷參數是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是最后一定要驗證等號能否成立,屬于基礎題.3、C【解析】

先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.4、A【解析】試題分析:,,所以,即集合中共有3個元素,故選A.考點:集合的運算.5、A【解析】

直接利用誘導公式化簡求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【點睛】本題考查三角函數的恒等變換及化簡求值,主要考查誘導公式的應用,屬于基礎題.6、B【解析】

求出函數的導數,利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數的導數的幾何意義,切線方程的求法,考查計算能力.7、C【解析】

根據復數模的性質即可求解.【詳解】,,故選:C【點睛】本題主要考查了復數模的性質,屬于容易題.8、D【解析】

根據拋物線的定義,結合,求出的坐標,然后求出的斜率即可.【詳解】解:拋物線的焦點,準線方程為,設,則,故,此時,即.則直線的斜率.故選:D.【點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.9、B【解析】

利用乘法運算化簡復數即可得到答案.【詳解】由已知,,所以,解得.故選:B【點睛】本題考查復數的概念及復數的乘法運算,考查學生的基本計算能力,是一道容易題.10、B【解析】

利用某一層樣本數等于某一層的總體個數乘以抽樣比計算即可.【詳解】由題意,,解得.故選:B.【點睛】本題考查簡單隨機抽樣中的分層抽樣,某一層樣本數等于某一層的總體個數乘以抽樣比,本題是一道基礎題.11、B【解析】

根據題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質、拋物線的幾何性質,考查了學生的計算能力,屬于中檔題12、D【解析】

試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】

①∵,∴平面

,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據線面垂直的判定和性質或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關于面對稱的點,使得點在平面內,根據對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面

,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;

②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設正方體的棱長為2.則:,,所以,設面的法向量為,則,即,令,則,設面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關于面對稱的點,使得點在平面內,則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設點的坐標為,,,所以,所以,又所以,所以,,,故④正確.

故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.14、【解析】

項和轉化可得,討論是否滿足,分段表示即得解【詳解】當時,由已知,可得,∵,①故,②由①-②得,∴.顯然當時不滿足上式,∴故答案為:【點睛】本題考查了利用求,考查了學生綜合分析,轉化劃歸,數學運算,分類討論的能力,屬于中檔題.15、1【解析】

利用二項式定理得到,將89寫成1+88,然后再利用二項式定理展開即可.【詳解】,因展開式中后面10項均有88這個因式,所以除以的余數為1.故答案為:1【點睛】本題考查二項式定理的綜合應用,涉及余數的問題,解決此類問題的關鍵是靈活構造二項式,并將它展開分析,本題是一道基礎題.16、【解析】

由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側棱底面,則該幾何體的體積為,,,因此,該棱錐的最長棱的長度為.故答案為:;.【點睛】本題考查由三視圖求體積、棱長,關鍵是由三視圖還原原幾何體,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)(i),;(ii).【解析】

(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據的最大值不小于可得關于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關系式為,.(ii)當觀賞角度的最大時,取得最小值.在中,由余弦定理可得,因為的最大值不小于,所以,解得,經驗證知,所以.即兩處噴泉間距離的最小值為.【點睛】本題考查解三角形在實際中的應用,解題時要注意把條件轉化為三角形的邊或角,然后借助正余弦定理進行求解.解題時要注意三角形邊角關系的運用,同時還要注意所得結果要符合實際意義.18、(1)證明見解析;(2)見解析;(3)存在,1.【解析】

(1),求出單調區(qū)間,進而求出,即可證明結論;(2)對(或)是否恒成立分類討論,若恒成立,沒有極值點,若不恒成立,求出的解,即可求出結論;(3)令,可證恒成立,而,由(2)得,在為減函數,在上單調遞減,在都存在,不滿足,當時,設,且,只需求出在單調遞增時的取值范圍即可.【詳解】(1),,,當時,,當時,,∴,故.(2)由題知,,,①當時,,所以在上單調遞減,沒有極值;②當時,,得,當時,;當時,,所以在上單調遞減,在上單調遞增.故在處取得極小值,無極大值.(3)不妨令,設在恒成立,在單調遞增,,在恒成立,所以,當時,,由(2)知,當時,在上單調遞減,恒成立;所以不等式在上恒成立,只能.當時,,由(1)知在上單調遞減,所以,不滿足題意.當時,設,因為,所以,,即,所以在上單調遞增,又,所以時,恒成立,即恒成立,故存在,使得不等式在上恒成立,此時的最小值是1.【點睛】本題考查導數綜合應用,涉及到函數的單調性、極值最值、不等式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數學計算能力,屬于較難題.19、(1)列聯表見解析,在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關;(2)分布列見解析,期望為.【解析】

(1)根據題中所給的條件補全列聯表,根據列聯表求出觀測值,把觀測值同臨界值進行比較,得到能在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關.(2)首先確定的取值,求出相應的概率,可得分布列和數學期望.【詳解】(1)根據題意及列聯表可得完整的列聯表如下:35歲以下(含35歲)35歲以上合計使用移動支付401050不使用移動支付104050合計5050100根據公式可得,所以在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關.(2)根據分層抽樣,可知35歲以下(含35歲)的人數為8人,35歲以上的有2人,所以獲得獎勵的35歲以下(含35歲)的人數為,則的可能為1,2,3,且,,,其分布列為123.【點睛】獨立性檢驗依據的值結合附表數據進行判斷,另外,離散型隨機變量的分布列,在求解的過程中,注意變量的取值以及對應的概率要計算正確,注意離散型隨機變量的期望公式的使用,屬于中檔題目.20、(1)證明見解析(2)【解析】

(1)先利用導數的四則運算法則和導數公式求出,再由函數的導數可知,函數在上單調遞增,在上單調遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒有零點;(2)由題意可將轉化為,構造函數,利用導數討論研究其在上的單調性,由,即可求出的取值范圍.【詳解】(1)若,則,,設,則,,,故函數是奇函數.當時,,,這時,又函數是奇函數,所以當時,.綜上,當時,函數單調遞增;當時,函數單調遞減.又,,故在區(qū)間上恒成立,所以在區(qū)間上沒有零點.(2),由,所以恒成立,若,則,設,.故當時,,又,所以當時,,滿足題意;當時,有,與條件矛盾,舍去;當時,令,則,又,故在區(qū)間上有無窮多個零點,設最小的零點為,則當時,,因此在上單調遞增.,所以.于是,當時,,得,與條件矛盾.故的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論