版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
答案第=page11頁(yè),共=sectionpages22頁(yè)專題22拋物線【練基礎(chǔ)】單選題1.(2023春·全國(guó)·高三校聯(lián)考)如圖1所示,拋物面天線是指由拋物面(拋物線繞其對(duì)稱軸旋轉(zhuǎn)形成的曲面)反射器和位于焦點(diǎn)上的照射器(饋源,通常采用喇叭天線)組成的單反射面型天線,廣泛應(yīng)用于微波和衛(wèi)星通訊等領(lǐng)域,具有結(jié)構(gòu)簡(jiǎn)單、方向性強(qiáng)、工作頻帶寬等特點(diǎn).圖2是圖1的軸截面,A,B兩點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,F(xiàn)是拋物線的焦點(diǎn),∠AFB是饋源的方向角,記為SKIPIF1<0,焦點(diǎn)F到頂點(diǎn)的距離f與口徑d的比值SKIPIF1<0稱為拋物面天線的焦徑比,它直接影響天線的效率與信噪比等.如果某拋物面天線饋源的方向角SKIPIF1<0滿足,SKIPIF1<0,則其焦徑比為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】建立直角坐標(biāo)系,設(shè)拋物線的標(biāo)準(zhǔn)方程為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,代入拋物線方程可得SKIPIF1<0,根據(jù)SKIPIF1<0,解得SKIPIF1<0與SKIPIF1<0的關(guān)系,即可得出SKIPIF1<0.【詳解】如圖所示,建立直角坐標(biāo)系,設(shè)拋物線的標(biāo)準(zhǔn)方程為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,代入拋物線方程可得:SKIPIF1<0,解得SKIPIF1<0,由于SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0(舍)又SKIPIF1<0,化為:SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍)SKIPIF1<0SKIPIF1<0.故選:C.2.(2023·福建莆田·統(tǒng)考二模)已知F為拋物線SKIPIF1<0的焦點(diǎn),A為C上的一點(diǎn),SKIPIF1<0中點(diǎn)的橫坐標(biāo)為2,則SKIPIF1<0(
)A.3 B.4 C.5 D.6【答案】B【分析】根據(jù)SKIPIF1<0中點(diǎn)的橫坐標(biāo)求出SKIPIF1<0點(diǎn)橫坐標(biāo),進(jìn)而由焦半徑公式求出答案.【詳解】由題意得:SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0中點(diǎn)的橫坐標(biāo)為SKIPIF1<0,故SKIPIF1<0,解得:SKIPIF1<0,由拋物線的焦半徑可知:SKIPIF1<0.故選:B3.(2023·北京平谷·統(tǒng)考模擬預(yù)測(cè))已知拋物線SKIPIF1<0,點(diǎn)O為坐標(biāo)原點(diǎn),并且經(jīng)過(guò)點(diǎn)SKIPIF1<0,若點(diǎn)P到該拋物線焦點(diǎn)的距離為2,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.SKIPIF1<0【答案】D【分析】由焦半徑公式列出方程,求出SKIPIF1<0,得到SKIPIF1<0,求出SKIPIF1<0的長(zhǎng).【詳解】拋物線準(zhǔn)線方程為SKIPIF1<0,由焦半徑可知:SKIPIF1<0,解得:SKIPIF1<0.則SKIPIF1<0,此時(shí)SKIPIF1<0,則SKIPIF1<0.故選:D4.(2023·新疆·統(tǒng)考一模)若SKIPIF1<0是拋物線SKIPIF1<0的焦點(diǎn),SKIPIF1<0是拋物線SKIPIF1<0上任意一點(diǎn),SKIPIF1<0的最小值為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0是拋物線SKIPIF1<0上兩點(diǎn),SKIPIF1<0,則線段SKIPIF1<0的中點(diǎn)到SKIPIF1<0軸的距離為(
)A.3 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題意可知SKIPIF1<0,利用拋物線的定義和梯形的中位線即可求解.【詳解】根據(jù)題意可知SKIPIF1<0如圖,取AB中點(diǎn)E,分別過(guò)點(diǎn)A、B、E作SKIPIF1<0于點(diǎn)D、C、G,DG與SKIPIF1<0軸交于點(diǎn)H.根據(jù)拋物線的定義可得:SKIPIF1<0SKIPIF1<0.因?yàn)镚E為梯形ABCD的中位線,所以SKIPIF1<0所以線段SKIPIF1<0的中點(diǎn)到SKIPIF1<0軸的距離SKIPIF1<0.故選:B5.(2023·河南·校聯(lián)考模擬預(yù)測(cè))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0兩點(diǎn),當(dāng)SKIPIF1<0與圓SKIPIF1<0相切時(shí),SKIPIF1<0的中點(diǎn)SKIPIF1<0到SKIPIF1<0的準(zhǔn)線的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,由直線與圓相切可得SKIPIF1<0,再聯(lián)立直線與拋物線方程,結(jié)合焦半徑公式即可得到結(jié)果.【詳解】由題意知SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0.因?yàn)橹本€SKIPIF1<0與圓SKIPIF1<0相切,所以圓心SKIPIF1<0到SKIPIF1<0的距離SKIPIF1<0,解得SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的中點(diǎn)SKIPIF1<0到SKIPIF1<0的準(zhǔn)線的距離為SKIPIF1<0.故選:D6.(2023·陜西榆林·統(tǒng)考一模)如圖1,某建筑物的屋頂像拋物線,建筑師通過(guò)拋物線的設(shè)計(jì)元素賦予了這座建筑輕盈?極簡(jiǎn)和雕塑般的氣質(zhì).若將該建筑外形弧線的一段按照一定的比例處理后可看成圖2所示的拋物線SKIPIF1<0的一部分,SKIPIF1<0為拋物線SKIPIF1<0上一點(diǎn),SKIPIF1<0為拋物線SKIPIF1<0的焦點(diǎn),若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.1 B.2 C.3 D.4【答案】A【分析】寫(xiě)出焦點(diǎn)坐標(biāo),設(shè)SKIPIF1<0,由SKIPIF1<0得出SKIPIF1<0點(diǎn)坐標(biāo),根據(jù)焦半徑公式得SKIPIF1<0,再由SKIPIF1<0求得SKIPIF1<0.【詳解】由題意知SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,由拋物線的幾何性質(zhì)知SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:A.7.(2023·遼寧·校聯(lián)考模擬預(yù)測(cè))已知拋物線SKIPIF1<0的焦點(diǎn)為F,點(diǎn)M在C上,點(diǎn)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由拋物線的定義可得SKIPIF1<0,求得SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得∠MAF=∠AMN,在△AMF中由正弦定理求得SKIPIF1<0,即可得到答案.【詳解】由題意知點(diǎn)A為拋物線C的準(zhǔn)線與x軸的交點(diǎn),如圖,過(guò)點(diǎn)M作MN垂直于準(zhǔn)線于點(diǎn)N,令SKIPIF1<0,則SKIPIF1<0,由拋物線的定義可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以∠MAF=∠AMN,所以SKIPIF1<0.在△AMF中,由正弦定理得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B.8.(2022·四川雅安·統(tǒng)考一模)過(guò)拋物線SKIPIF1<0的焦點(diǎn)F且傾斜角為銳角的直線SKIPIF1<0與C交于兩點(diǎn)A,B(橫坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)A在第一象限),SKIPIF1<0為C的準(zhǔn)線,過(guò)點(diǎn)A與SKIPIF1<0垂直的直線與SKIPIF1<0相交于點(diǎn)M.若SKIPIF1<0,則SKIPIF1<0(
)A.3 B.6 C.9 D.12【答案】C【分析】由已知可求得直線SKIPIF1<0的斜率為SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立直線與拋物線的方程,可求出SKIPIF1<0,SKIPIF1<0,即可解得結(jié)果.【詳解】設(shè)直線SKIPIF1<0的斜率為SKIPIF1<0,傾斜角為SKIPIF1<0,SKIPIF1<0.由拋物線的定義知,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0為等邊三角形,且SKIPIF1<0軸,所以SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立直線SKIPIF1<0的方程與拋物線的方程SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0.故選:C.二、多選題9.(2023·安徽·統(tǒng)考一模)已知SKIPIF1<0為坐標(biāo)原點(diǎn),點(diǎn)SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,連接SKIPIF1<0并延長(zhǎng),與SKIPIF1<0交于點(diǎn)SKIPIF1<0,則(
)A.SKIPIF1<0的準(zhǔn)線方程為SKIPIF1<0 B.點(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn)C.直線SKIPIF1<0與SKIPIF1<0相切 D.SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0平行【答案】BCD【分析】將SKIPIF1<0代入拋物線得SKIPIF1<0,則得到其準(zhǔn)線方程,則可判斷A,聯(lián)立直線SKIPIF1<0的方程與拋物線方程即可得到SKIPIF1<0,即可判斷B,利用導(dǎo)數(shù)求出拋物線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程,令SKIPIF1<0,則可判斷C,再次利用導(dǎo)數(shù)求出拋物線在SKIPIF1<0處的切線斜率,則可判斷D.【詳解】對(duì)A,根據(jù)中點(diǎn)公式得SKIPIF1<0,將其代入SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,所以拋物線SKIPIF1<0的準(zhǔn)線方程為SKIPIF1<0,故A錯(cuò)誤,對(duì)B,SKIPIF1<0,則直線SKIPIF1<0的斜率為SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,將其代入SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0或0(舍去),此時(shí)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0中點(diǎn),故B正確;對(duì)C,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,故拋物線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的斜率為SKIPIF1<0,故切線方程為SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,所以直線SKIPIF1<0為SKIPIF1<0的切線,故C正確;對(duì)D,拋物線SKIPIF1<0在SKIPIF1<0處的切線方程的斜率為SKIPIF1<0,而直線SKIPIF1<0的斜率為SKIPIF1<0,則兩直線的斜率相等,且兩直線顯然不可能重合,所以SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0平行.故選:BCD.10.(2023·全國(guó)·模擬預(yù)測(cè))已知拋物線SKIPIF1<0的焦點(diǎn)為F,點(diǎn)SKIPIF1<0在C上,P為C上的一個(gè)動(dòng)點(diǎn),則(
)A.C的準(zhǔn)線方程為SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0的周長(zhǎng)的最小值為11 D.在x軸上存在點(diǎn)E,使得SKIPIF1<0為鈍角【答案】BC【分析】根據(jù)題意求出SKIPIF1<0,即可求出準(zhǔn)線,即可判斷A;設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,根據(jù)兩點(diǎn)的距離公式結(jié)合二次函數(shù)的性質(zhì)即可判斷B;過(guò)點(diǎn)P作SKIPIF1<0垂直于C的準(zhǔn)線,垂足為N,連接MN,再結(jié)合圖象,即可求得SKIPIF1<0的周長(zhǎng)的最小值,即可判斷C;設(shè)SKIPIF1<0,再判斷SKIPIF1<0是否有解即可判斷D.【詳解】A選項(xiàng):因?yàn)辄c(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,所以SKIPIF1<0,解得SKIPIF1<0,所以拋物線C的方程為SKIPIF1<0,所以C的準(zhǔn)線方程為SKIPIF1<0,故A錯(cuò)誤;B選項(xiàng):設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0,故B正確;C選項(xiàng):過(guò)點(diǎn)P作SKIPIF1<0垂直于C的準(zhǔn)線,垂足為N,連接MN,則SKIPIF1<0,易知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,當(dāng)且僅當(dāng)M,P,N三點(diǎn)共線時(shí)等號(hào)成立,所以SKIPIF1<0的周長(zhǎng)的最小值為11,故C正確;D選項(xiàng):設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在C上,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0不可能為鈍角,故D錯(cuò)誤.故選:BC.11.(2023·遼寧·遼寧實(shí)驗(yàn)中學(xué)??寄M預(yù)測(cè))已知拋物線SKIPIF1<0(p>0)的焦點(diǎn)為F,斜率為SKIPIF1<0的直線SKIPIF1<0過(guò)點(diǎn)F交C于A,B兩點(diǎn),且點(diǎn)B的橫坐標(biāo)為4,直線SKIPIF1<0過(guò)點(diǎn)B交C于另一點(diǎn)M(異于點(diǎn)A),交C的準(zhǔn)線于點(diǎn)D,直線AM交準(zhǔn)線于點(diǎn)E,準(zhǔn)線交y軸于點(diǎn)N,則(
)A.C的方程為SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】對(duì)于A,根據(jù)題意設(shè)得SKIPIF1<0的坐標(biāo),再由直線SKIPIF1<0的斜率求得SKIPIF1<0,從而求得拋物線SKIPIF1<0的方程,由此判斷即可;對(duì)于B,聯(lián)立直線SKIPIF1<0與拋物線SKIPIF1<0的方程,求得SKIPIF1<0的坐標(biāo),進(jìn)而求得SKIPIF1<0,由此即可判斷;對(duì)于D,設(shè)SKIPIF1<0,從而利用直接法求得SKIPIF1<0的坐標(biāo)關(guān)于SKIPIF1<0的表達(dá)式,從而證得SKIPIF1<0,由此判斷即可;對(duì)于C,舉反例排除即可.【詳解】對(duì)于A,由題意得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,整理得p2+6p-16=0,又p>0,解得p=2,所以C的方程為x2=4y,故A正確;對(duì)于B,由選項(xiàng)A知雙曲線C的準(zhǔn)線方程為y=-1,SKIPIF1<0,SKIPIF1<0,直線l1的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,解得x=-1或x=4,所以SKIPIF1<0,則SKIPIF1<0,故B正確;對(duì)于D,設(shè)點(diǎn)SKIPIF1<0,由題意知m≠±1且m≠±4,所以直線SKIPIF1<0,令y=-1,得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,同理可得SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故D正確;對(duì)于C,當(dāng)m=2時(shí),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故C錯(cuò)誤.故選:ABD..【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題解決的關(guān)鍵是設(shè)SKIPIF1<0,從而利用熟練的運(yùn)算能力將SKIPIF1<0的坐標(biāo)表示為關(guān)于SKIPIF1<0的表達(dá)式,從而得解.12.(2023·江蘇連云港·統(tǒng)考模擬預(yù)測(cè))已知拋物線C:SKIPIF1<0的焦點(diǎn)為F,直線l與C交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),其中點(diǎn)A在第一象限,點(diǎn)M是AB的中點(diǎn),作MN垂直于準(zhǔn)線,垂足為N,則下列結(jié)論正確的是(
)A.若直線l經(jīng)過(guò)焦點(diǎn)F,且SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則直線l的傾斜角為SKIPIF1<0C.若以AB為直徑的圓M經(jīng)過(guò)焦點(diǎn)F,則SKIPIF1<0的最小值為SKIPIF1<0D.若以AB為直徑作圓M,則圓M與準(zhǔn)線相切【答案】BC【分析】A選項(xiàng),考慮直線斜率為0和不為0兩種情況,設(shè)出直線方程,聯(lián)立拋物線方程,得到兩根之和,兩根之積,由SKIPIF1<0列出方程,求出SKIPIF1<0,A錯(cuò)誤;B選項(xiàng),先得到直線SKIPIF1<0經(jīng)過(guò)拋物線焦點(diǎn),與A一樣,設(shè)出直線方程,聯(lián)立拋物線方程,得到兩根之和,兩根之積,結(jié)合SKIPIF1<0求出直線l的斜率,得到傾斜角;C選項(xiàng),設(shè)SKIPIF1<0,由拋物線定義結(jié)合基本不等式得到SKIPIF1<0的最小值;D選項(xiàng),與C一樣,考慮直線l不經(jīng)過(guò)焦點(diǎn)時(shí),得到圓M與準(zhǔn)線相離,D錯(cuò)誤.【詳解】A選項(xiàng),由題意得:SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,當(dāng)直線SKIPIF1<0的斜率為0時(shí),此時(shí),直線l與C只有1個(gè)交點(diǎn),不合題意,故設(shè)直線SKIPIF1<0,與SKIPIF1<0聯(lián)立得:SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,A錯(cuò)誤;B選項(xiàng),因?yàn)镾KIPIF1<0,所以SKIPIF1<0三點(diǎn)共線,即直線SKIPIF1<0經(jīng)過(guò)拋物線焦點(diǎn),當(dāng)直線SKIPIF1<0的斜率為0時(shí),此時(shí),直線l與C只有1個(gè)交點(diǎn),不合題意,故設(shè)直線SKIPIF1<0,與SKIPIF1<0聯(lián)立得:SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,代入SKIPIF1<0中,得到SKIPIF1<0,即SKIPIF1<0,因?yàn)辄c(diǎn)A在第一象限,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0故直線l的斜率為SKIPIF1<0,設(shè)直線l的傾斜角為SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,B正確;C選項(xiàng),設(shè)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0⊥準(zhǔn)線于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0⊥準(zhǔn)線于點(diǎn)P,因?yàn)橐訟B為直徑的圓M經(jīng)過(guò)焦點(diǎn)F,所以SKIPIF1<0⊥SKIPIF1<0,則SKIPIF1<0,由拋物線定義可知:SKIPIF1<0,由基本不等式得:SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,故SKIPIF1<0,即SKIPIF1<0,C正確;D選項(xiàng),當(dāng)直線l不經(jīng)過(guò)焦點(diǎn)SKIPIF1<0時(shí),設(shè)SKIPIF1<0,由三角形三邊關(guān)系可知:SKIPIF1<0,由拋物線定義可知結(jié)合C選項(xiàng)可知:SKIPIF1<0,即SKIPIF1<0,若以AB為直徑作圓M,則圓M與準(zhǔn)線相離,D錯(cuò)誤.故選:BC【點(diǎn)睛】圓錐曲線中最值或范圍問(wèn)題的常見(jiàn)解法:(1)幾何法,若題目的條件和結(jié)論能明顯體現(xiàn)幾何特征和意義,則考慮利用幾何法來(lái)解決;(2)代數(shù)法,若題目的條件和結(jié)論能體現(xiàn)某種明確的函數(shù)關(guān)系,則可首先建立目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值或范圍.三、填空題13.(2023·湖北·統(tǒng)考模擬預(yù)測(cè))已知SKIPIF1<0為拋物線SKIPIF1<0上一點(diǎn),過(guò)點(diǎn)SKIPIF1<0的直線與拋物線C交于A,B兩點(diǎn),且直線SKIPIF1<0與SKIPIF1<0的傾斜角互補(bǔ),則SKIPIF1<0__________.【答案】2【分析】由題可得SKIPIF1<0,然后利用韋達(dá)定理法,兩點(diǎn)間距離公式結(jié)合條件即得.【詳解】由點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上得:SKIPIF1<0,即SKIPIF1<0,所以拋物線C的方程為:SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由直線SKIPIF1<0與SKIPIF1<0的傾斜角互補(bǔ)得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故答案為:2.14.(2023·山東威?!そy(tǒng)考一模)已知橢圓SKIPIF1<0的右焦點(diǎn)為F,以F為焦點(diǎn)的拋物線SKIPIF1<0與橢圓的一個(gè)交點(diǎn)為M,若MF垂直于x軸,則該橢圓的離心率為_(kāi)_____.【答案】SKIPIF1<0##SKIPIF1<0【分析】利用拋物線和橢圓交點(diǎn)及簡(jiǎn)單性質(zhì),列出關(guān)系式,求解橢圓離心率即可.【詳解】根據(jù)橢圓和拋物線對(duì)稱性及SKIPIF1<0軸,由SKIPIF1<0在拋物線上得SKIPIF1<0,SKIPIF1<0在橢圓上得SKIPIF1<0SKIPIF1<0.則由條件得:SKIPIF1<0且SKIPIF1<0SKIPIF1<0即得SKIPIF1<0.解得SKIPIF1<0(舍去),所以SKIPIF1<0故答案為:SKIPIF1<015.(2023·新疆烏魯木齊·統(tǒng)考一模)設(shè)SKIPIF1<0為坐標(biāo)原點(diǎn),拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0軸的垂線交SKIPIF1<0于點(diǎn)SKIPIF1<0為SKIPIF1<0軸正半軸上一點(diǎn),且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的準(zhǔn)線方程為_(kāi)_____.【答案】SKIPIF1<0【分析】由題知SKIPIF1<0,進(jìn)而根據(jù)SKIPIF1<0計(jì)算即可.【詳解】解:如圖,由題知SKIPIF1<0,將SKIPIF1<0代入方程SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0(SKIPIF1<0舍),所以,拋物線SKIPIF1<0,準(zhǔn)線方程為:SKIPIF1<0故答案為:SKIPIF1<016.(2023·重慶沙坪壩·重慶南開(kāi)中學(xué)??寄M預(yù)測(cè))已知拋物線SKIPIF1<0為拋物線內(nèi)一點(diǎn),不經(jīng)過(guò)SKIPIF1<0點(diǎn)的直線SKIPIF1<0與拋物線相交于SKIPIF1<0兩點(diǎn),連接SKIPIF1<0分別交拋物線于SKIPIF1<0兩點(diǎn),若對(duì)任意直線SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0成立,則該拋物線方程為_(kāi)_____.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,根據(jù)SKIPIF1<0推出SKIPIF1<0,結(jié)合點(diǎn)在拋物線上可得SKIPIF1<0,SKIPIF1<0,即可求得p,即得答案.【詳解】由題意設(shè)SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,可得:SKIPIF1<0,同理可得:SKIPIF1<0,則:SKIPIF1<0(*)將SKIPIF1<0兩點(diǎn)代入拋物線方程得SKIPIF1<0,作差可得:SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,同理可得,SKIPIF1<0,代入(*),可得SKIPIF1<0,此時(shí)拋物線方程為SKIPIF1<0,故答案為:SKIPIF1<0四、解答題17.(2023·安徽蚌埠·統(tǒng)考二模)已知拋物線SKIPIF1<0,點(diǎn)SKIPIF1<0在C上,A關(guān)于動(dòng)點(diǎn)SKIPIF1<0的對(duì)稱點(diǎn)記為M,過(guò)M的直線l與C交于SKIPIF1<0,SKIPIF1<0,M為P,Q的中點(diǎn).(1)當(dāng)直線l過(guò)坐標(biāo)原點(diǎn)O時(shí),求SKIPIF1<0外接圓的標(biāo)準(zhǔn)方程;(2)求SKIPIF1<0面積的最大值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由題意解得拋物線方程,設(shè)直線方程,代入拋物線方程,利用M為P,Q的中點(diǎn)解出P,Q的坐標(biāo),利用圓上三點(diǎn)求圓的方程;(2)把SKIPIF1<0面積表示為SKIPIF1<0的函數(shù),利用導(dǎo)數(shù)研究單調(diào)性求最大值.【詳解】(1)由點(diǎn)SKIPIF1<0在C上,代入SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.因?yàn)镸為A關(guān)于動(dòng)點(diǎn)SKIPIF1<0的對(duì)稱點(diǎn),所以SKIPIF1<0.設(shè)直線SKIPIF1<0,聯(lián)立SKIPIF1<0整理得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由M為P,Q的中點(diǎn),得SKIPIF1<0,故SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,由直線l過(guò)坐標(biāo)原點(diǎn)O,得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0外接圓的一般方程SKIPIF1<0,代入SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0外接圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)由(1)可知,SKIPIF1<0,A到直線SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0面積SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,S單調(diào)遞增;當(dāng)SKIPIF1<0,SKIPIF1<0,S單調(diào)遞減;故SKIPIF1<0,SKIPIF1<0面積的最大值SKIPIF1<0.【點(diǎn)睛】思路點(diǎn)睛:解答直線與拋物線的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系;最值問(wèn)題經(jīng)常轉(zhuǎn)化成函數(shù)問(wèn)題處理.18.(2023·山東日照·統(tǒng)考一模)已知拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0為SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0垂直于動(dòng)直線SKIPIF1<0,垂足為SKIPIF1<0,當(dāng)SKIPIF1<0為等邊三角形時(shí),其面積為SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)設(shè)SKIPIF1<0為原點(diǎn),過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0相切,且與橢圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,試問(wèn):是否存在SKIPIF1<0,使得SKIPIF1<0?若存在,求SKIPIF1<0的值;若不存在,請(qǐng)說(shuō)明理由.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)正三角形得三角形的邊長(zhǎng),再根據(jù)拋物線的定義進(jìn)行求解;(2)設(shè)SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,由導(dǎo)數(shù)的幾何意義可得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,中點(diǎn)SKIPIF1<0,由點(diǎn)差法可得SKIPIF1<0,SKIPIF1<0,從而可以求出SKIPIF1<0.【詳解】(1)∵SKIPIF1<0為等邊三角形時(shí),其面積為SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,根據(jù)SKIPIF1<0和拋物線的定義可知,SKIPIF1<0落在準(zhǔn)線上,即SKIPIF1<0,設(shè)準(zhǔn)線和SKIPIF1<0軸交點(diǎn)為SKIPIF1<0,易證SKIPIF1<0,于是SKIPIF1<0,∴SKIPIF1<0的方程為SKIPIF1<0;(2)假設(shè)存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0線為段SKIPIF1<0的中點(diǎn),設(shè)SKIPIF1<0,依題意得SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以切線SKIPIF1<0的斜率為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,整理可得:SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0三點(diǎn)共線,滿足SKIPIF1<0為SKIPIF1<0的中點(diǎn),綜上,存在SKIPIF1<0,使得點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn)恒成立,SKIPIF1<0.【提能力】一、單選題19.(2023·陜西咸陽(yáng)·??家荒#┰O(shè)F為拋物線C:SKIPIF1<0的焦點(diǎn),點(diǎn)A在C上,且A到C焦點(diǎn)的距離為3,到y(tǒng)軸的距離為2,則p=(
)A.1 B.2 C.3 D.4【答案】B【分析】根據(jù)給定條件,求出拋物線C的焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,再利用定義求解作答.【詳解】拋物線C:SKIPIF1<0的焦點(diǎn)SKIPIF1<0,準(zhǔn)線方程SKIPIF1<0,顯然點(diǎn)A的橫坐標(biāo)為2,由拋物線定義得:SKIPIF1<0,所以SKIPIF1<0.故選:B20.(2023春·福建南平·高三校聯(lián)考階段練習(xí))過(guò)拋物線SKIPIF1<0(p>0)的焦點(diǎn)F的直線交拋物線C于A(x1,y1),B(x2,y2)兩點(diǎn),設(shè)SKIPIF1<0,SKIPIF1<0,若n,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,則SKIPIF1<0(
)A.SKIPIF1<0 B.3C.3或SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由拋物線的定義及等比中項(xiàng)的性質(zhì)計(jì)算可得結(jié)果.【詳解】由n,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,得SKIPIF1<0.由拋物線的定義知,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:B.21.(2023·吉林·統(tǒng)考二模)已知拋物線SKIPIF1<0的焦點(diǎn)F與橢圓SKIPIF1<0的一個(gè)焦點(diǎn)重合,則下列說(shuō)法不正確的是(
)A.橢圓E的焦距是2 B.橢圓E的離心率是SKIPIF1<0C.拋物線C的準(zhǔn)線方程是x=-1 D.拋物線C的焦點(diǎn)到其準(zhǔn)線的距離是4【答案】D【分析】根據(jù)橢圓方程求出SKIPIF1<0,求出焦距和離心率,根據(jù)拋物線SKIPIF1<0的焦點(diǎn)F與橢圓SKIPIF1<0的一個(gè)焦點(diǎn)重合求出SKIPIF1<0,就能求出曲線和焦點(diǎn)到其準(zhǔn)線的距離.【詳解】根據(jù)橢圓SKIPIF1<0可得:SKIPIF1<0所以橢圓E的焦距是SKIPIF1<0,故A正確;橢圓E的離心率為SKIPIF1<0,故B正確;又因?yàn)闄E圓SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,拋物線SKIPIF1<0的焦點(diǎn)F與橢圓SKIPIF1<0的一個(gè)焦點(diǎn)重合SKIPIF1<0,即SKIPIF1<0所以拋物線C的準(zhǔn)線方程是SKIPIF1<0,故C正確;拋物線C的焦點(diǎn)到其準(zhǔn)線的距離SKIPIF1<0,故D不正確.故選:D22.(2023秋·廣西河池·高三統(tǒng)考期末)已知拋物線SKIPIF1<0)的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線為l,過(guò)SKIPIF1<0的直線與拋物線交于點(diǎn)A、B,與直線l交于點(diǎn)D,若SKIPIF1<0,則p=(
)A.1 B.SKIPIF1<0 C.2 D.3【答案】D【分析】利用拋物線的定義,以及幾何關(guān)系可知SKIPIF1<0,再利用數(shù)形結(jié)合可求SKIPIF1<0的值.【詳解】如圖,設(shè)準(zhǔn)線與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,作SKIPIF1<0,SKIPIF1<0,垂足分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.根據(jù)拋物線定義知SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0,,又SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0.故選:SKIPIF1<0.23.(2023·四川成都·成都七中校考二模)已知點(diǎn)SKIPIF1<0是拋物線SKIPIF1<0的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)SKIPIF1<0為拋物線的焦點(diǎn),SKIPIF1<0在拋物線上且滿足SKIPIF1<0,當(dāng)SKIPIF1<0取最大值時(shí),點(diǎn)SKIPIF1<0恰好在以SKIPIF1<0為焦點(diǎn)的雙曲線上,則雙曲線的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先利用兩點(diǎn)間距離表示SKIPIF1<0,再結(jié)合基本不等式求最值,并且求得點(diǎn)SKIPIF1<0的坐標(biāo),根據(jù)雙曲線上的點(diǎn)和焦點(diǎn)坐標(biāo),即可求得雙曲線的離心率.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),此時(shí)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:C24.(2022·四川成都·成都市第二十中學(xué)校校考一模)在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0為任一動(dòng)點(diǎn).條件SKIPIF1<0:直線SKIPIF1<0與直線SKIPIF1<0相交于點(diǎn)SKIPIF1<0;條件SKIPIF1<0:動(dòng)點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上.則SKIPIF1<0是SKIPIF1<0的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【分析】先分別將條件SKIPIF1<0條件SKIPIF1<0轉(zhuǎn)化為與實(shí)數(shù)對(duì)SKIPIF1<0相關(guān)的解析式,進(jìn)而得到二者間的邏輯關(guān)系.【詳解】條件SKIPIF1<0:直線SKIPIF1<0與直線SKIPIF1<0相交于點(diǎn)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0條件SKIPIF1<0:動(dòng)點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,則SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0的充分不必要條件.故選:A25.(2022·河南·模擬預(yù)測(cè))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0在SKIPIF1<0上,圓SKIPIF1<0的半徑為1,過(guò)點(diǎn)SKIPIF1<0的直線與圓SKIPIF1<0相切于點(diǎn)SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.7 B.8 C.9 D.10【答案】B【分析】由題作圖,由圖可得SKIPIF1<0,根據(jù)拋物線定義可得SKIPIF1<0等于點(diǎn)SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離,根據(jù)圖形可得最小值情況,從而可得SKIPIF1<0的最小值.【詳解】解:因?yàn)閽佄锞€SKIPIF1<0,所以焦點(diǎn)坐標(biāo)為SKIPIF1<0,如下圖所示:連接SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0垂直準(zhǔn)線SKIPIF1<0于SKIPIF1<0,則在直角SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,由拋物線的定義得:SKIPIF1<0,則由圖可得SKIPIF1<0的最小值即拋物線頂點(diǎn)SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離,即SKIPIF1<0,所以SKIPIF1<0.故選:B.26.(2023·陜西西安·西安市東方中學(xué)校考一模)已知拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,拋物線SKIPIF1<0上有一動(dòng)點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.5 B.6 C.7 D.8【答案】C【分析】拋物線的準(zhǔn)線SKIPIF1<0的方程為SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,根據(jù)拋物線的定義可知SKIPIF1<0,則當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),可求SKIPIF1<0得最小值,答案可得.【詳解】解:拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線SKIPIF1<0的方程為SKIPIF1<0,如圖,過(guò)SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,由拋物線的定義可知SKIPIF1<0,所以SKIPIF1<0則當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0最小為SKIPIF1<0.所以SKIPIF1<0的最小值為SKIPIF1<0.故選:C.二、多選題27.(2023·全國(guó)·高三專題練習(xí))過(guò)拋物線SKIPIF1<0上一點(diǎn)A(1,-4)作兩條相互垂直的直線,與C的另外兩個(gè)交點(diǎn)分別為M,N,則(
)A.C的準(zhǔn)線方程是SKIPIF1<0B.過(guò)C的焦點(diǎn)的最短弦長(zhǎng)為8C.直線MN過(guò)定點(diǎn)(0,4)D.當(dāng)點(diǎn)A到直線MN的距離最大時(shí),直線MN的方程為SKIPIF1<0【答案】AD【分析】由題可得SKIPIF1<0為SKIPIF1<0,進(jìn)而判斷A,利用焦點(diǎn)弦的方程結(jié)合拋物線的定義結(jié)合條件可判斷B,設(shè)SKIPIF1<0為SKIPIF1<0,聯(lián)立拋物線利用韋達(dá)定理結(jié)合條件可得m、n的數(shù)量關(guān)系,可判斷C,由C分析所得的定點(diǎn)P,要使SKIPIF1<0到直線SKIPIF1<0的距離最大有SKIPIF1<0,可得此時(shí)直線SKIPIF1<0的方程判斷D.【詳解】將SKIPIF1<0代入SKIPIF1<0中得:SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0,所以SKIPIF1<0的準(zhǔn)線方程是SKIPIF1<0,故A正確;由題可知SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,可設(shè)過(guò)SKIPIF1<0的焦點(diǎn)的直線為SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,設(shè)交點(diǎn)為SKIPIF1<0,則SKIPI
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)三年級(jí)班主任的工作反思
- 2025化工產(chǎn)品購(gòu)銷合同電子版
- 2025軟件項(xiàng)目合同標(biāo)準(zhǔn)模板
- 探討農(nóng)行如何運(yùn)用合規(guī)規(guī)范經(jīng)營(yíng)流程
- 2025新版農(nóng)村房屋買賣合同范本
- 2025防水工程合同范本
- 打造個(gè)性化購(gòu)物體驗(yàn)提升小區(qū)超市顧客忠誠(chéng)度
- 數(shù)字化與智慧化雙輪驅(qū)動(dòng)下的現(xiàn)代農(nóng)業(yè)創(chuàng)新實(shí)踐匯報(bào)
- 家用電器使用規(guī)范及安全教育普及培訓(xùn)
- 教育領(lǐng)域下的學(xué)生營(yíng)養(yǎng)需求分析與研究
- 2024年廣東省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 2024至2030年中國(guó)液體罐式集裝箱數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 四川省2024年中考數(shù)學(xué)試卷十七套合卷【附答案】
- 家用電子產(chǎn)品維修工(中級(jí))職業(yè)技能鑒定考試題庫(kù)(含答案)
- 無(wú)脊椎動(dòng)物課件-2024-2025學(xué)年人教版生物七年級(jí)上冊(cè)
- 2024年銀發(fā)健康經(jīng)濟(jì)趨勢(shì)與展望報(bào)告:新老人、新需求、新生態(tài)-AgeClub
- 2024年江西省“振興杯”家務(wù)服務(wù)員競(jìng)賽考試題庫(kù)(含答案)
- 吉林省2024年中考物理試題(含答案)
- 長(zhǎng)鏈氯化石蠟
- 小學(xué)六年級(jí)數(shù)學(xué)解方程計(jì)算題
- 春節(jié)英語(yǔ)介紹SpringFestival(課件)新思維小學(xué)英語(yǔ)5A
評(píng)論
0/150
提交評(píng)論