新高考數(shù)學(xué)二輪復(fù)習(xí)對點題型第17講數(shù)列的通項、求和及數(shù)列不等式的證明(學(xué)生版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)對點題型第17講數(shù)列的通項、求和及數(shù)列不等式的證明(學(xué)生版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)對點題型第17講數(shù)列的通項、求和及數(shù)列不等式的證明(學(xué)生版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)對點題型第17講數(shù)列的通項、求和及數(shù)列不等式的證明(學(xué)生版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)對點題型第17講數(shù)列的通項、求和及數(shù)列不等式的證明(學(xué)生版)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第17講數(shù)列的通項、求和及數(shù)列不等式的證明真題展示2022新高考一卷第17題記SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項和,已知SKIPIF1<0,SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列.(1)求SKIPIF1<0的通項公式;(2)證明:SKIPIF1<0.試題亮點試題以考生熟悉的等差數(shù)列為載體而設(shè)計,但不是通常的給定等差數(shù)列求通項、求和等常規(guī)操作,而是將等差數(shù)列的性質(zhì)融合在前n項和與通項的關(guān)系之中,特別是第(2)問中的數(shù)列的求和運算涉及裂項相消.試題源于教材、其創(chuàng)新思想又高于教材,充分體現(xiàn)高考的選拔功能.試題對高中數(shù)學(xué)教學(xué)具有指導(dǎo)作用,要求考生在強化基本功的同時,加強對知識的靈活運用,形成學(xué)科素養(yǎng).知識要點整理數(shù)列求和問題數(shù)列求和是數(shù)列問題中的基本題型,是數(shù)列部分的重點內(nèi)容,在高考中也占據(jù)重要地位,它具有復(fù)雜多變、綜合性強、解法靈活等特點.?dāng)?shù)列求和的方法主要有公式法、分組轉(zhuǎn)化法、倒序相加法、錯位相減法、裂項相消法、并項求和法等.一、公式法求和例1求數(shù)列1,3+5,7+9+11,13+15+17+19,…的前n項和.反思感悟公式法求和中的常用公式有(1)等差、等比數(shù)列的前n項和①等差數(shù)列:Sn=na1+eq\f(nn-1,2)d(d為公差)或Sn=eq\f(na1+an,2).②等比數(shù)列:Sn=eq\b\lc\{\rc\(\a\vs4\al\co1(na1,q=1,,\f(a11-qn,1-q)=\f(a1-anq,1-q),q≠1,))其中q為公比.(2)四類特殊數(shù)列的前n項和①1+2+3+…+n=eq\f(1,2)n(n+1).②1+3+5+…+(2n-1)=n2.③12+22+32+…+n2=eq\f(1,6)n(n+1)(2n+1).④13+23+33+…+n3=eq\f(1,4)n2(n+1)2.二、分組轉(zhuǎn)化法求和例2求和:Sn=eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(1,x)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(x2+\f(1,x2)))2+…+eq\b\lc\(\rc\)(\a\vs4\al\co1(xn+\f(1,xn)))2(x≠0).反思感悟某些數(shù)列,通過適當(dāng)分組,可得出兩個或幾個等差數(shù)列或等比數(shù)列,進而利用等差數(shù)列或等比數(shù)列的求和公式分別求和,從而得出原數(shù)列的和.三、倒序相加法求和例3設(shè)F(x)=eq\f(4x,4x+2),求Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2021)))+Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,2021)))+…+Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2020,2021))).反思感悟(1)倒序相加法類比推導(dǎo)等差數(shù)列的前n項和公式時所用的方法,就是將一個數(shù)列倒過來排列(反序),再把它與原數(shù)列相加,就可以得到n個(a1+an).(2)如果一個數(shù)列{an},首末兩端等“距離”的兩項的和相等,那么求其和可以用倒序相加法.四、裂項相消法求和例4求和:eq\f(1,22-1)+eq\f(1,32-1)+eq\f(1,42-1)+…+eq\f(1,n2-1),n≥2,n∈N*.延伸探究求和:eq\f(22,22-1)+eq\f(32,32-1)+eq\f(42,42-1)+…+eq\f(n2,n2-1),n≥2,n∈N*.反思感悟(1)對于裂項后明顯有能夠相消的項的一類數(shù)列,在求和時常用“裂項法”,分式的求和多利用此法,可用待定系數(shù)法對通項公式拆項,相消時應(yīng)注意消去項的規(guī)律,即消去哪些項,保留哪些項.(2)常見的拆項公式有①eq\f(1,nn+1)=eq\f(1,n)-eq\f(1,n+1).②eq\f(1,nn+k)=eq\f(1,k)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,n)-\f(1,n+k))).③eq\f(1,2n-12n+1)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2n-1)-\f(1,2n+1))).④eq\f(1,\r(n)+\r(n+1))=eq\r(n+1)-eq\r(n).⑤eq\f(1,nn+1n+2)=eq\f(1,2)eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,nn+1)-\f(1,n+1n+2))).五、錯位相減法求和例5已知{an}是等比數(shù)列,{bn}是等差數(shù)列,且a1=1,b1=3,a2+b2=7,a3+b3=11.(1)求數(shù)列{an}和{bn}的通項公式;(2)設(shè)cn=eq\f(bn,an),n∈N*,求數(shù)列{cn}的前n項和Tn.反思感悟一般地,如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,求數(shù)列{an·bn}的前n項和時,可采用錯位相減法求和,在寫出“Sn”與“qSn”的表達式時應(yīng)特別注意將兩式“錯項對齊”以便于下一步準(zhǔn)確寫出“Sn-qSn”的表達式.六、并項求和法求和例6求和:Sn=-1+3-5+7-…+(-1)n(2n-1).反思感悟通項中含有(-1)n的數(shù)列求前n項和時可以考慮使用奇偶并項法,分項數(shù)為奇數(shù)和偶數(shù)分別進行求和.三年真題1.設(shè)SKIPIF1<0是等差數(shù)列,SKIPIF1<0是等比數(shù)列,且SKIPIF1<0.(1)求SKIPIF1<0與SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0的前n項和為SKIPIF1<0,求證:SKIPIF1<0;(3)求SKIPIF1<0.2.已知SKIPIF1<0為等差數(shù)列,SKIPIF1<0是公比為2的等比數(shù)列,且SKIPIF1<0.(1)證明:SKIPIF1<0;(2)求集合SKIPIF1<0中元素個數(shù).3.已知等差數(shù)列SKIPIF1<0的首項SKIPIF1<0,公差SKIPIF1<0.記SKIPIF1<0的前n項和為SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0;(2)若對于每個SKIPIF1<0,存在實數(shù)SKIPIF1<0,使SKIPIF1<0成等比數(shù)列,求d的取值范圍.4.已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,討論SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,求a的取值范圍;(3)設(shè)SKIPIF1<0,證明:SKIPIF1<0.5.記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項和.已知SKIPIF1<0.(1)證明:SKIPIF1<0是等差數(shù)列;(2)若SKIPIF1<0成等比數(shù)列,求SKIPIF1<0的最小值.6.已知SKIPIF1<0為有窮整數(shù)數(shù)列.給定正整數(shù)m,若對任意的SKIPIF1<0,在Q中存在SKIPIF1<0,使得SKIPIF1<0,則稱Q為SKIPIF1<0連續(xù)可表數(shù)列.(1)判斷SKIPIF1<0是否為SKIPIF1<0連續(xù)可表數(shù)列?是否為SKIPIF1<0連續(xù)可表數(shù)列?說明理由;(2)若SKIPIF1<0為SKIPIF1<0連續(xù)可表數(shù)列,求證:k的最小值為4;(3)若SKIPIF1<0為SKIPIF1<0連續(xù)可表數(shù)列,且SKIPIF1<0,求證:SKIPIF1<0.7.記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項和,已知SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列.(1)求SKIPIF1<0的通項公式;(2)證明:SKIPIF1<0.8.已知SKIPIF1<0是公差為2的等差數(shù)列,其前8項和為64.SKIPIF1<0是公比大于0的等比數(shù)列,SKIPIF1<0.(I)求SKIPIF1<0和SKIPIF1<0的通項公式;(II)記SKIPIF1<0,(i)證明SKIPIF1<0是等比數(shù)列;(ii)證明SKIPIF1<09.記SKIPIF1<0是公差不為0的等差數(shù)列SKIPIF1<0的前n項和,若SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式SKIPIF1<0;(2)求使SKIPIF1<0成立的n的最小值.10.設(shè)p為實數(shù).若無窮數(shù)列SKIPIF1<0滿足如下三個性質(zhì),則稱SKIPIF1<0為SKIPIF1<0數(shù)列:①SKIPIF1<0,且SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0,SKIPIF1<0.(1)如果數(shù)列SKIPIF1<0的前4項為2,-2,-2,-1,那么SKIPIF1<0是否可能為SKIPIF1<0數(shù)列?說明理由;(2)若數(shù)列SKIPIF1<0是SKIPIF1<0數(shù)列,求SKIPIF1<0;(3)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0.是否存在SKIPIF1<0數(shù)列SKIPIF1<0,使得SKIPIF1<0恒成立?如果存在,求出所有的p;如果不存在,說明理由.11.記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項和,已知SKIPIF1<0,且數(shù)列SKIPIF1<0是等差數(shù)列,證明:SKIPIF1<0是等差數(shù)列.12.已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項;(2)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,記SKIPIF1<0的前n項和為SKIPIF1<0,若SKIPIF1<0對任意SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍.13.記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項和,SKIPIF1<0為數(shù)列SKIPIF1<0的前n項積,已知SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0是等差數(shù)列;(2)求SKIPIF1<0的通項公式.14.已知數(shù)列SKIPIF1<0的各項均為正數(shù),記SKIPIF1<0為SKIPIF1<0的前n項和,從下面①②③中選取兩個作為條件,證明另外一個成立.①數(shù)列SKIPIF1<0是等差數(shù)列:②數(shù)列SKIPIF1<0是等差數(shù)列;③SKIPIF1<0.注:若選擇不同的組合分別解答,則按第一個解答計分.15.設(shè)SKIPIF1<0是首項為1的等比數(shù)列,數(shù)列SKIPIF1<0滿足SKIPIF1<0.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列.(1)求SKIPIF1<0和SKIPIF1<0的通項公式;(2)記SKIPIF1<0和SKIPIF1<0分別為SKIPIF1<0和SKIPIF1<0的前n項和.證明:SKIPIF1<0.16.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0(1)記SKIPIF1<0,寫出SKIPIF1<0,SKIPIF1<0,并求數(shù)列SKIPIF1<0的通項公式;(2)求SKIPIF1<0的前20項和.三年模擬一、單選題1.已知角SKIPIF1<0的終邊不在坐標(biāo)軸上,則下列一定成等比數(shù)列的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,首項SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0的值為(

)A.4093 B.4094 C.4095 D.40963.已知數(shù)列SKIPIF1<0為等差數(shù)列,SKIPIF1<0為等比數(shù)列SKIPIF1<0的前n項和,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、填空題4.設(shè)SKIPIF1<0是由正整數(shù)組成且項數(shù)為SKIPIF1<0的增數(shù)列,已知SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0任意相鄰兩項的差的絕對值不超過1,若對于SKIPIF1<0中任意序數(shù)不同的兩項SKIPIF1<0和SKIPIF1<0,在剩下的項中總存在序數(shù)不同的兩項SKIPIF1<0和SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的最小值為___________.5.已知項數(shù)為m的有限數(shù)列SKIPIF1<0是1,2,3,…,m的一個排列.若SKIPIF1<0,且SKIPIF1<0,則所有可能的m值之和為______.6.?dāng)?shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0__________7.已知等差數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0的值等于__________.8.已知公差為SKIPIF1<0且各項均為正數(shù)的等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為__________.9.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0表示數(shù)列SKIPIF1<0的前n項和,則使不等式SKIPIF1<0成立的正整數(shù)n的最小值是______.三、解答題10.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0成等比數(shù)列.(1)求數(shù)列SKIPIF1<0的通項公式;(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0,求證:SKIPIF1<0.11.已知數(shù)列SKIPIF1<0的首項SKIPIF1<0,且滿足SKIPIF1<0.(1)求證:數(shù)列SKIPIF1<0為等比數(shù)列;(2)若SKIPIF1<0,求滿足條件的最大整數(shù)SKIPIF1<0.12.近兩年,直播帶貨逐漸成為一種新興的營銷模式,帶來電商行業(yè)的新增長點.某直播平臺第1年初的啟動資金為500萬元,由于一些知名主播加入,平臺資金的年平均增長率可達SKIPIF1<0,每年年底把除運營成本SKIPIF1<0萬元,再將剩余資金繼續(xù)投入直播平合.(1)若SKIPIF1<0,在第3年年底扣除運營成本后,直播平臺的資金有多少萬元?(2)每年的運營成本最多控制在多少萬元,才能使得直播平臺在第6年年底?除運營成本后資金達到3000萬元?(結(jié)果精確到SKIPIF1<0萬元)13.若函數(shù)SKIPIF1<0是其定義域內(nèi)的區(qū)間SKIPIF1<0上的嚴(yán)格增函數(shù),而SKIPIF1<0是SKIPIF1<0上的嚴(yán)格減函數(shù),則稱SKIPIF1<0是SKIPIF1<0上的“弱增函數(shù)”.若數(shù)列SKIPIF1<0是嚴(yán)格增數(shù)列,而SKIPIF1<0是嚴(yán)格減數(shù)列,則稱SKIPIF1<0是“弱增數(shù)列”.(1)判斷函數(shù)SKIPIF1<0是否為SKIPIF1<0上的“弱增函數(shù)”,并說明理由(其中SKIPIF1<0是自然對數(shù)的底數(shù));(2)已知函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖像關(guān)于坐標(biāo)原點對稱,若SKIPIF1<0是SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論