版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省元江一中2025屆高三第三次模擬考試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,正方體的棱長為1,動點(diǎn)在線段上,、分別是、的中點(diǎn),則下列結(jié)論中錯誤的是()A., B.存在點(diǎn),使得平面平面C.平面 D.三棱錐的體積為定值2.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則下述四個結(jié)論:①②③④點(diǎn)為函數(shù)的一個對稱中心其中所有正確結(jié)論的編號是()A.①②③ B.①③④ C.①②④ D.②③④3.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.24.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.75.拋物線y2=ax(a>0)的準(zhǔn)線與雙曲線C:x28A.8 B.6 C.4 D.26.以下兩個圖表是2019年初的4個月我國四大城市的居民消費(fèi)價格指數(shù)(上一年同月)變化圖表,則以下說法錯誤的是()(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A.3月份四個城市之間的居民消費(fèi)價格指數(shù)與其它月份相比增長幅度較為平均B.4月份僅有三個城市居民消費(fèi)價格指數(shù)超過102C.四個月的數(shù)據(jù)顯示北京市的居民消費(fèi)價格指數(shù)增長幅度波動較小D.僅有天津市從年初開始居民消費(fèi)價格指數(shù)的增長呈上升趨勢7.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.8.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點(diǎn),F(xiàn)為C的焦點(diǎn),若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.49.在平面直角坐標(biāo)系中,已知是圓上兩個動點(diǎn),且滿足,設(shè)到直線的距離之和的最大值為,若數(shù)列的前項和恒成立,則實數(shù)的取值范圍是()A. B. C. D.10.若復(fù)數(shù)()是純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.12.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知是偶函數(shù),則的最小值為___________.14.已知復(fù)數(shù),其中為虛數(shù)單位,若復(fù)數(shù)為純虛數(shù),則實數(shù)的值是__.15.已知數(shù)列滿足,則________.16.在中,角所對的邊分別為,,的平分線交于點(diǎn)D,且,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知分別是橢圓的左、右焦點(diǎn),直線與交于兩點(diǎn),,且.(1)求的方程;(2)已知點(diǎn)是上的任意一點(diǎn),不經(jīng)過原點(diǎn)的直線與交于兩點(diǎn),直線的斜率都存在,且,求的值.18.(12分)設(shè)數(shù)列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數(shù)列{an}(2)設(shè)cn=bnan,求數(shù)列19.(12分)如圖,在三棱柱中,是邊長為2的菱形,且,是矩形,,且平面平面,點(diǎn)在線段上移動(不與重合),是的中點(diǎn).(1)當(dāng)四面體的外接球的表面積為時,證明:.平面(2)當(dāng)四面體的體積最大時,求平面與平面所成銳二面角的余弦值.20.(12分)如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面,,分別是的中點(diǎn).(1)證明:平面平面;(2)已知點(diǎn)在棱上且,求直線與平面所成角的余弦值.21.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.22.(10分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若不等式恒成立,求實數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點(diǎn),所以,故A正確;在B中,由于直線與平面有交點(diǎn),所以不存在點(diǎn),使得平面平面,故B錯誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點(diǎn)睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.2、B【解析】
首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對稱性求出、,即可求出的解析式,從而驗證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.3、B【解析】
首先根據(jù)題中所給的三視圖,得到點(diǎn)M和點(diǎn)N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點(diǎn)M、N在其四分之一的矩形的對角線的端點(diǎn)處,根據(jù)平面上兩點(diǎn)間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點(diǎn)M和點(diǎn)N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點(diǎn)處,所以所求的最短路徑的長度為,故選B.點(diǎn)睛:該題考查的是有關(guān)幾何體的表面上兩點(diǎn)之間的最短距離的求解問題,在解題的過程中,需要明確兩個點(diǎn)在幾何體上所處的位置,再利用平面上兩點(diǎn)間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.4、C【解析】
根據(jù)程序框圖程序運(yùn)算即可得.【詳解】依程序運(yùn)算可得:,故選:C【點(diǎn)睛】本題主要考查了程序框圖的計算,解題的關(guān)鍵是理解程序框圖運(yùn)行的過程.5、A【解析】
求得拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,解得兩交點(diǎn),由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準(zhǔn)線為x=-a4,雙曲線C:x28-y24【點(diǎn)睛】本題考查三角形的面積的求法,注意運(yùn)用拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.6、D【解析】
采用逐一驗證法,根據(jù)圖表,可得結(jié)果.【詳解】A正確,從圖表二可知,3月份四個城市的居民消費(fèi)價格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費(fèi)價格指數(shù)低于102C正確,從圖表一中可知,只有北京市4個月的居民消費(fèi)價格指數(shù)相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費(fèi)價格指數(shù)的增長呈上升趨勢故選:D【點(diǎn)睛】本題考查圖表的認(rèn)識,審清題意,細(xì)心觀察,屬基礎(chǔ)題.7、B【解析】
由題中垂直關(guān)系,可得漸近線的方程,結(jié)合,構(gòu)造齊次關(guān)系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點(diǎn)睛】本題考查了雙曲線的漸近線和離心率,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.8、C【解析】
方法一:設(shè),利用拋物線的定義判斷出是的中點(diǎn),結(jié)合等腰三角形的性質(zhì)求得點(diǎn)的橫坐標(biāo),根據(jù)拋物線的定義求得,進(jìn)而求得.方法二:設(shè)出兩點(diǎn)的橫坐標(biāo),由拋物線的定義,結(jié)合求得的關(guān)系式,聯(lián)立直線的方程和拋物線方程,寫出韋達(dá)定理,由此求得,進(jìn)而求得.【詳解】方法一:由題意得拋物線的準(zhǔn)線方程為,直線恒過定點(diǎn),過分別作于,于,連接,由,則,所以點(diǎn)為的中點(diǎn),又點(diǎn)是的中點(diǎn),則,所以,又所以由等腰三角形三線合一得點(diǎn)的橫坐標(biāo)為,所以,所以.方法二:拋物線的準(zhǔn)線方程為,直線由題意設(shè)兩點(diǎn)橫坐標(biāo)分別為,則由拋物線定義得又①②由①②得.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關(guān)系,屬于中檔題.9、B【解析】
由于到直線的距離和等于中點(diǎn)到此直線距離的二倍,所以只需求中點(diǎn)到此直線距離的最大值即可。再得到中點(diǎn)的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點(diǎn)到此直線距離的最大值的關(guān)系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設(shè)線段的中點(diǎn),則,在圓上,到直線的距離之和等于點(diǎn)到該直線的距離的兩倍,點(diǎn)到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點(diǎn)睛】本題考查了向量數(shù)量積,點(diǎn)到直線的距離,數(shù)列求和等知識,是一道不錯的綜合題.10、B【解析】
化簡復(fù)數(shù),由它是純虛數(shù),求得,從而確定對應(yīng)的點(diǎn)的坐標(biāo).【詳解】是純虛數(shù),則,,,對應(yīng)點(diǎn)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查復(fù)數(shù)的概念與幾何意義.本題屬于基礎(chǔ)題.11、B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.12、A【解析】
向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標(biāo)表示,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
由偶函數(shù)性質(zhì)可得,解得,再結(jié)合基本不等式即可求解【詳解】令得,所以,當(dāng)且僅當(dāng)時取等號.故答案為:2【點(diǎn)睛】考查函數(shù)的奇偶性、基本不等式,屬于基礎(chǔ)題14、2【解析】
由題,得,然后根據(jù)純虛數(shù)的定義,即可得到本題答案.【詳解】由題,得,又復(fù)數(shù)為純虛數(shù),所以,解得.故答案為:2【點(diǎn)睛】本題主要考查純虛數(shù)定義的應(yīng)用,屬基礎(chǔ)題.15、【解析】
項和轉(zhuǎn)化可得,討論是否滿足,分段表示即得解【詳解】當(dāng)時,由已知,可得,∵,①故,②由①-②得,∴.顯然當(dāng)時不滿足上式,∴故答案為:【點(diǎn)睛】本題考查了利用求,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算,分類討論的能力,屬于中檔題.16、9【解析】分析:先根據(jù)三角形面積公式得條件、再利用基本不等式求最值.詳解:由題意可知,,由角平分線性質(zhì)和三角形面積公式得,化簡得,因此當(dāng)且僅當(dāng)時取等號,則的最小值為.點(diǎn)睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)不妨設(shè),,計算得到,根據(jù)面積得到,計算得到答案.(2)設(shè),,,聯(lián)立方程利用韋達(dá)定理得到,,代入化簡計算得到答案.【詳解】(1)由題意不妨設(shè),,則,.∵,∴,∴.又,∴,∴,,故的方程為.(2)設(shè),,,則.∵,∴,設(shè)直線的方程為,聯(lián)立整理得.∵在上,∴,∴上式可化為.∴,,,∴,,∴.∴.【點(diǎn)睛】本題考查了橢圓方程,定值問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.18、(1)an=(2)Tn【解析】
(1)利用an與Sn的遞推關(guān)系可以an的通項公式;P點(diǎn)代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點(diǎn)P(bn,bn+1則數(shù)列{bn(2)因為cn=b則13兩式相減得:23所以Tn【點(diǎn)睛】用遞推關(guān)系an=Sn-19、(1)證明見解析(2)【解析】
(1)由題意,先求得為的中點(diǎn),再證明平面平面,進(jìn)而可得結(jié)論;(2)由題意,當(dāng)點(diǎn)位于點(diǎn)時,四面體的體積最大,再建立空間直角坐標(biāo)系,利用空間向量運(yùn)算即可.【詳解】(1)證明:當(dāng)四面體的外接球的表面積為時.則其外接球的半徑為.因為時邊長為2的菱形,是矩形.,且平面平面.則,.則為四面體外接球的直徑.所以,即.由題意,,,所以.因為,所以為的中點(diǎn).記的中點(diǎn)為,連接,.則,,,所以平面平面.因為平面,所以平面.(2)由題意,平面,則三棱錐的高不變.當(dāng)四面體的體積最大時,的面積最大.所以當(dāng)點(diǎn)位于點(diǎn)時,四面體的體積最大.以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.則,,,,.所以,,,.設(shè)平面的法向量為.則令,得.設(shè)平面的一個法向量為.則令,得.設(shè)平面與平面所成銳二面角是,則.所以當(dāng)四面體的體積最大時,平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查平面與平面的平行、線面平行,考查平面與平面所成銳二面角的余弦值,正確運(yùn)用平面與平面的平行、線面平行的判定,利用好空間向量是關(guān)鍵,屬于基礎(chǔ)題.20、(1)證明見解析;(2).【解析】
(1)由平面幾何知識可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標(biāo)系,可求得面PAB的法向量,再運(yùn)用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆福建省海濱學(xué)校、港尾中學(xué)高考適應(yīng)性考試數(shù)學(xué)試卷含解析
- 2025屆云南省昭通市永善縣第一中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析
- 江蘇省鹽城市阜寧中學(xué)2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析
- 2024年度智慧物流運(yùn)輸服務(wù)合同3篇
- 2024年深海海洋資源勘探開發(fā)合同
- 2024年工程項目施工合同2篇
- 2024版固定資產(chǎn)資產(chǎn)評估與資產(chǎn)抵押擔(dān)保合同范本3篇
- 2024版海上運(yùn)輸貨物保險合同文檔全文預(yù)覽及理賠流程3篇
- 2024版國際教育培訓(xùn)合同(含師資認(rèn)證及課程體系)3篇
- 2024年度教育培訓(xùn)機(jī)構(gòu)教師課時提成合同樣本3篇
- 高級微觀經(jīng)濟(jì)學(xué)
- 聽力障礙隨班就讀學(xué)生個別輔導(dǎo)記錄
- 烏鴉喝水(繪本)
- 溝拐加油站試生產(chǎn)方案
- 山東省煙臺市2023-2024學(xué)年三上數(shù)學(xué)期末含答案
- 幼兒園畢業(yè)紀(jì)念冊PPT模板
- 主體幸福感模型的理論建構(gòu)
- 觀察記錄那些事兒-走進(jìn)經(jīng)典閱讀《聚焦式觀察:兒童觀察、評價與課程設(shè)計》優(yōu)質(zhì)課件PPT
- 浙教版小學(xué)人·自然·社會四年級第17課 走近王安石 課件
- QC小組(提高維修效率)課件
- 火成巖巖石化學(xué)圖解與判別
評論
0/150
提交評論