新高考數(shù)學(xué)二輪復(fù)習(xí) 多選題分類提升練習(xí)專題一【數(shù)列】多選題專練六十題原卷版_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 多選題分類提升練習(xí)專題一【數(shù)列】多選題專練六十題原卷版_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 多選題分類提升練習(xí)專題一【數(shù)列】多選題專練六十題原卷版_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 多選題分類提升練習(xí)專題一【數(shù)列】多選題專練六十題原卷版_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 多選題分類提升練習(xí)專題一【數(shù)列】多選題專練六十題原卷版_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

多選題專練六十題專題一數(shù)列(學(xué)生版)第一部——高考真題練1.(2021·全國·統(tǒng)考高考真題)設(shè)正整數(shù)SKIPIF1<0,其中SKIPIF1<0,記SKIPIF1<0.則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0第二部——基礎(chǔ)模擬題2.(2023·河北張家口·統(tǒng)考三模)已知SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項和,SKIPIF1<0,則下列遞推關(guān)系中能使SKIPIF1<0存在最大值的有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2023·浙江·校聯(lián)考模擬預(yù)測)意大利著名數(shù)學(xué)家萊昂納多.斐波那契(LeonardoFibonacci)在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,8,13,21,34,…,該數(shù)列的特點是:前兩個數(shù)都是1,從第三個數(shù)起,每一個數(shù)都等于它的前面兩個數(shù)的和,人們把這樣的一列數(shù)稱為“斐波那契數(shù)列”.同時,隨著SKIPIF1<0趨于無窮大,其前一項與后一項的比值越來越逼近黃金分割SKIPIF1<0,因此又稱“黃金分割數(shù)列”,記斐波那契數(shù)列為SKIPIF1<0,則下列結(jié)論正確的有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2023·江蘇南京·南京市第一中學(xué)??寄M預(yù)測)在一次《數(shù)列》的公開課時,有位教師引導(dǎo)學(xué)生構(gòu)造新數(shù)列:在數(shù)列的每相鄰兩項之間插入此兩項的和,形成新的數(shù)列,再把所得數(shù)列按照此方法不斷構(gòu)造出新的數(shù)列.下面我們將數(shù)列1,2進(jìn)行構(gòu)造,第1次得到數(shù)列SKIPIF1<0;第2次得到數(shù)列SKIPIF1<0;第SKIPIF1<0次得到數(shù)列SKIPIF1<0記SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2023·廣東佛山·??寄M預(yù)測)已知數(shù)列SKIPIF1<0,下列結(jié)論正確的有(

)A.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則數(shù)列SKIPIF1<0是等比數(shù)列D.若SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和,則數(shù)列SKIPIF1<0為等差數(shù)列6.(2023·安徽亳州·蒙城第一中學(xué)校聯(lián)考模擬預(yù)測)如圖,楊輝三角形中的對角線之和1,1,2,3,5,8,13,21,…構(gòu)成的斐波那契數(shù)列經(jīng)常在自然中神奇地出現(xiàn),例如向日葵花序中央的管狀花和種子從圓心向外,每一圈的數(shù)字就組成這個數(shù)列,等等.在量子力學(xué)中,粒子糾纏態(tài)、量子臨界點研究也離不開這個數(shù)列.斐波那契數(shù)列SKIPIF1<0的第一項和第二項都是1,第三項起每一項都等于它前兩項的和,則(

A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<07.(2023·湖北武漢·武漢二中校聯(lián)考模擬預(yù)測)在公差不為零的等差數(shù)列SKIPIF1<0中,已知其前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0等比數(shù)列,則下列結(jié)論正確的是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,則SKIPIF1<08.(2023·江蘇無錫·輔仁高中??寄M預(yù)測)南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列.如數(shù)列1,3,6,10,它的前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列,則數(shù)列1,3,6,10被稱為二階等差數(shù)列,現(xiàn)有高階等差數(shù)列SKIPIF1<0?其前7項分別為5,9,17,27,37,45,49,設(shè)通項公式SKIPIF1<0.則下列結(jié)論中正確的是(

)(參考公式:SKIPIF1<0)A.?dāng)?shù)列SKIPIF1<0為二階等差數(shù)列B.?dāng)?shù)列SKIPIF1<0的前11項和最大C.SKIPIF1<0D.SKIPIF1<09.(2023·遼寧沈陽·東北育才學(xué)校??寄M預(yù)測)已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,則下列說法正確的是(

)A.?dāng)?shù)列SKIPIF1<0的前n項和為SKIPIF1<0B.?dāng)?shù)列SKIPIF1<0的通項公式為SKIPIF1<0C.?dāng)?shù)列SKIPIF1<0不是遞增數(shù)列D.?dāng)?shù)列SKIPIF1<0為遞增數(shù)列10.(2023·湖北武漢·湖北省武昌實驗中學(xué)校考模擬預(yù)測)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0(SKIPIF1<0,SKIPIF1<0為常數(shù)),則下列結(jié)論正確的有(

)A.SKIPIF1<0一定是等比數(shù)列 B.當(dāng)SKIPIF1<0時,SKIPIF1<0C.當(dāng)SKIPIF1<0時,SKIPIF1<0 D.SKIPIF1<011.(2023·湖北省直轄縣級單位·統(tǒng)考模擬預(yù)測)在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,B為坐標(biāo)原點,點P在圓SKIPIF1<0上,若對于SKIPIF1<0,存在數(shù)列SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,則下列說法正確的是(

)A.SKIPIF1<0為公差為2的等差數(shù)列 B.SKIPIF1<0為公比為SKIPIF1<0的等比數(shù)列C.SKIPIF1<0 D.SKIPIF1<0前n項和SKIPIF1<012.(2023·全國·模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0為SKIPIF1<0的前SKIPIF1<0項和.則下列說法正確的是(

)A.SKIPIF1<0取最大值時,SKIPIF1<0 B.當(dāng)SKIPIF1<0取最小值時,SKIPIF1<0C.當(dāng)SKIPIF1<0取最大值時,SKIPIF1<0 D.SKIPIF1<0的最大值為SKIPIF1<013.(2023·浙江寧波·鎮(zhèn)海中學(xué)??寄M預(yù)測)定義:若數(shù)列SKIPIF1<0滿足,存在實數(shù)M,對任意SKIPIF1<0,都有SKIPIF1<0,則稱M是數(shù)列SKIPIF1<0的一個上界.現(xiàn)已知SKIPIF1<0為正項遞增數(shù)列,SKIPIF1<0,下列說法正確的是(

)A.若SKIPIF1<0有上界,則SKIPIF1<0一定存在最小的上界B.若SKIPIF1<0有上界,則SKIPIF1<0可能不存在最小的上界C.若SKIPIF1<0無上界,則對于任意的SKIPIF1<0,均存在SKIPIF1<0,使得SKIPIF1<0D.若SKIPIF1<0無上界,則存在SKIPIF1<0,當(dāng)SKIPIF1<0時,恒有SKIPIF1<014.(2023·廣東佛山·??寄M預(yù)測)所有的有理數(shù)都可以寫成兩個整數(shù)的比,例如SKIPIF1<0如何表示成兩個整數(shù)的比值呢?SKIPIF1<0代表了等比數(shù)列SKIPIF1<0的無限項求和,可通過計算該數(shù)列的前SKIPIF1<0項的和,再令SKIPIF1<0獲得答案.此時SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即可得SKIPIF1<0.則下列說法正確的是(

)A.SKIPIF1<0B.SKIPIF1<0為無限循環(huán)小數(shù)C.SKIPIF1<0為有限小數(shù)D.?dāng)?shù)列SKIPIF1<0的無限項求和是有限小數(shù)15.(2023·山東·山東省實驗中學(xué)??级#┢矫媛菪且砸粋€固定點開始,向外圈逐漸旋繞而形成的圖案,如圖(1).它的畫法是這樣的:正方形ABCD的邊長為4,取正方形ABCD各邊的四等分點E,F(xiàn),G,H作第二個正方形,然后再取正方形EFGH各邊的四等分點M,N,P,Q作第三個正方形,以此方法一直循環(huán)下去,就可得到陰影部分圖案,設(shè)正方形ABCD邊長為SKIPIF1<0,后續(xù)各正方形邊長依次為SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,…;如圖(2)陰影部分,設(shè)直角三角形AEH面積為SKIPIF1<0,后續(xù)各直角三角形面積依次為SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,….則(

A.?dāng)?shù)列SKIPIF1<0是以4為首項,SKIPIF1<0為公比的等比數(shù)列B.從正方形SKIPIF1<0開始,連續(xù)SKIPIF1<0個正方形的面積之和為32C.使得不等式SKIPIF1<0成立的SKIPIF1<0的最大值為3D.?dāng)?shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<016.(2023·重慶沙坪壩·重慶八中??级#┰跀?shù)列SKIPIF1<0中,SKIPIF1<0(SKIPIF1<0,SKIPIF1<0為非零常數(shù)),則稱SKIPIF1<0為“等方差數(shù)列”,SKIPIF1<0稱為“公方差”,下列對“等方差數(shù)列”的判斷正確的是(

)A.SKIPIF1<0是等方差數(shù)列B.若正項等方差數(shù)列SKIPIF1<0的首項SKIPIF1<0,且SKIPIF1<0是等比數(shù)列,則SKIPIF1<0C.等比數(shù)列不可能為等方差數(shù)列D.存在數(shù)列SKIPIF1<0既是等差數(shù)列,又是等方差數(shù)列17.(2023·湖南郴州·校聯(lián)考模擬預(yù)測)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,若數(shù)列SKIPIF1<0和SKIPIF1<0均為等差數(shù)列,且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<018.(2022·全國·模擬預(yù)測)已知等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,公比SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則()A.SKIPIF1<0 B.當(dāng)SKIPIF1<0時,SKIPIF1<0最小C.當(dāng)SKIPIF1<0時,SKIPIF1<0最小 D.存在SKIPIF1<0,使得SKIPIF1<019.(2023·安徽合肥·合肥市第六中學(xué)??寄M預(yù)測)已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則(

)A.SKIPIF1<0,使得SKIPIF1<0 B.SKIPIF1<0,使得SKIPIF1<0C.SKIPIF1<0,使得SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<020.(2023·江蘇揚(yáng)州·揚(yáng)州中學(xué)??寄M預(yù)測)設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,其前SKIPIF1<0項和為SKIPIF1<0,前SKIPIF1<0項積為SKIPIF1<0,并且滿足條件SKIPIF1<0,則下列結(jié)論正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0的最大值為SKIPIF1<0 D.SKIPIF1<0的最大值為SKIPIF1<021.(2023·湖北武漢·華中師大一附中??寄M預(yù)測)已知集合SKIPIF1<0,SKIPIF1<0,集合SKIPIF1<0,將集合C中所有元素從小到大依次排列為一個數(shù)列SKIPIF1<0,SKIPIF1<0為數(shù)列SKIPIF1<0的前n項和,則(

)A.SKIPIF1<0B.SKIPIF1<0或2C.SKIPIF1<0D.若存在SKIPIF1<0使SKIPIF1<0,則n的最小值為2622.(2023·浙江·校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0.若SKIPIF1<0時SKIPIF1<0,且SKIPIF1<0時SKIPIF1<0,則(

)A.SKIPIF1<0 B.函數(shù)SKIPIF1<0的圖像關(guān)于點SKIPIF1<0對稱C.SKIPIF1<0 D.SKIPIF1<023.(2023·全國·模擬預(yù)測)已知數(shù)列1,1,2,3,5,8,…被稱為“斐波那契數(shù)列”該數(shù)列是以兔子繁殖為例子引入的,故又稱為“兔子數(shù)列”,斐波那契數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則下列說法正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<024.(2023·重慶·統(tǒng)考模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,記數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,若存在正整數(shù)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的值是(

)A.1 B.2 C.3 D.425.(2023·江蘇鎮(zhèn)江·江蘇省鎮(zhèn)江第一中學(xué)校考模擬預(yù)測)已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0C.SKIPIF1<0取最小值時SKIPIF1<0D.設(shè)SKIPIF1<0,則SKIPIF1<026.(2023·安徽滁州·安徽省定遠(yuǎn)中學(xué)??寄M預(yù)測)已知首項為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列SKIPIF1<0,其前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,記SKIPIF1<0,SKIPIF1<0,則(

)A.公比SKIPIF1<0B.若SKIPIF1<0是遞減數(shù)列,則SKIPIF1<0C.若SKIPIF1<0不單調(diào),則SKIPIF1<0的最大項為SKIPIF1<0D.若SKIPIF1<0不單調(diào),則SKIPIF1<0的最小項為SKIPIF1<027.(2023·安徽滁州·安徽省定遠(yuǎn)中學(xué)校考模擬預(yù)測)歷史上著名的伯努利錯排問題指的是:一個人有SKIPIF1<0封不同的信,投入SKIPIF1<0個對應(yīng)的不同的信箱,他把每封信都投錯了信箱,投錯的方法數(shù)為SKIPIF1<0例如兩封信都投錯有SKIPIF1<0種方法,三封信都投錯有SKIPIF1<0種方法,通過推理可得:SKIPIF1<0.高等數(shù)學(xué)給出了泰勒公式:SKIPIF1<0,則下列說法正確的是(

)A.SKIPIF1<0B.SKIPIF1<0為等比數(shù)列C.SKIPIF1<0D.信封均被投錯的概率大于SKIPIF1<028.(2023·全國·模擬預(yù)測)設(shè)SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項和.下面幾個條件中,能推出SKIPIF1<0是等差數(shù)列的為(

)A.當(dāng)SKIPIF1<0時,SKIPIF1<0 B.當(dāng)SKIPIF1<0時,SKIPIF1<0C.當(dāng)SKIPIF1<0時,SKIPIF1<0 D.當(dāng)SKIPIF1<0時,SKIPIF1<029.(2023·山東威?!そy(tǒng)考二模)已知數(shù)列SKIPIF1<0的首項SKIPIF1<0,前n項和為SKIPIF1<0.設(shè)SKIPIF1<0與k是常數(shù),若對任意SKIPIF1<0,均有SKIPIF1<0成立,則稱此數(shù)列為“SKIPIF1<0”數(shù)列.若數(shù)列SKIPIF1<0是“SKIPIF1<0”數(shù)列,且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0為等比數(shù)列C.SKIPIF1<0的前n項和為SKIPIF1<0 D.SKIPIF1<0為等差數(shù)列30.(2023·山西陽泉·統(tǒng)考三模)設(shè)無窮數(shù)列SKIPIF1<0為正項等差數(shù)列且其前n項和為SKIPIF1<0,若SKIPIF1<0,則下列判斷正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<031.(2023·湖南岳陽·統(tǒng)考三模)設(shè)數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,則下列結(jié)論正確的有(

)A.SKIPIF1<0 B.?dāng)?shù)列SKIPIF1<0單調(diào)遞減C.當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值 D.SKIPIF1<0時,n的最小值為732.(2023·湖南長沙·周南中學(xué)校考三模)已知數(shù)列SKIPIF1<0的前n項和是SKIPIF1<0,則下列說法正確的是(

)A.若SKIPIF1<0,則SKIPIF1<0是等差數(shù)列B.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0是等比數(shù)列C.若SKIPIF1<0是等差數(shù)列,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列D.若SKIPIF1<0是等比數(shù)列,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列33.(2023·吉林長春·統(tǒng)考模擬預(yù)測)已知正項數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,且有SKIPIF1<0,則下列結(jié)論正確的是(

).A.SKIPIF1<0 B.?dāng)?shù)列SKIPIF1<0為等差數(shù)列C.SKIPIF1<0 D.SKIPIF1<034.(2023·江蘇淮安·江蘇省盱眙中學(xué)校考模擬預(yù)測)設(shè)a,SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列說法不正確的是(

)A.當(dāng)SKIPIF1<0時,SKIPIF1<0 B.當(dāng)SKIPIF1<0時,SKIPIF1<0C.當(dāng)SKIPIF1<0時,SKIPIF1<0 D.當(dāng)SKIPIF1<0時,SKIPIF1<035.(2023·云南昆明·統(tǒng)考模擬預(yù)測)已知a,b,c為非零實數(shù),則下列說法一定正確的是(

)A.若a,b,c成等比數(shù)列,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列B.若a,b,c成等差數(shù)列,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列C.若a2,b2,c2成等比數(shù)列,則a,b,c成等比數(shù)列D.若a,b,c成等差數(shù)列,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列36.(2023·山東·山東省實驗中學(xué)??家荒#┮阎猄KIPIF1<0為等差數(shù)列,前n項和為SKIPIF1<0,SKIPIF1<0,公差SKIPIF1<0,則(

).A.SKIPIF1<0B.SKIPIF1<0C.當(dāng)SKIPIF1<0或6時,SKIPIF1<0取得最大值為30D.?dāng)?shù)列SKIPIF1<0與數(shù)列SKIPIF1<0共有671項互為相反數(shù)37.(2023·江蘇南通·江蘇省如皋中學(xué)校考模擬預(yù)測)意大利著名數(shù)學(xué)家斐波那契在研究兔子的繁殖問題時,發(fā)現(xiàn)有這樣的一列數(shù):1,1,2,3,5,8,13,21,….該數(shù)列的特點如下:前兩個數(shù)均為1,從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.人們把這樣的一列數(shù)組成的數(shù)列SKIPIF1<0稱為斐波那契數(shù)列,現(xiàn)將SKIPIF1<0中的各項除以2所得的余數(shù)按原來的順序構(gòu)成的數(shù)列記為SKIPIF1<0,數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,下列說法正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.SKIPIF1<038.(2023·浙江·統(tǒng)考二模)“冰雹猜想”也稱為“角谷猜想”,是指對于任意一個正整數(shù)SKIPIF1<0,如果SKIPIF1<0是奇數(shù)?乘以3再加1,如果SKIPIF1<0是偶數(shù)就除以2,這樣經(jīng)過若干次操作后的結(jié)果必為1,猶如冰雹掉落的過程.參照“冰雹猜想”,提出了如下問題:設(shè)SKIPIF1<0,各項均為正整數(shù)的數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0則(

)A.當(dāng)SKIPIF1<0時,SKIPIF1<0B.當(dāng)SKIPIF1<0時,SKIPIF1<0C.當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0D.當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0是遞增數(shù)列39.(2023·海南·統(tǒng)考模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,等差數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0恒成立,則實數(shù)λ的值可以為(

)A.-36 B.-54 C.-81 D.-10840.(2023·安徽淮北·統(tǒng)考二模)已知棋盤上標(biāo)有第0,1,2,...,100站,棋子開始時位于第0站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳一站;若擲出反面,棋子向前跳兩站,直到跳到第99站(勝利大本營)或第100站(歡樂大本營)時,游戲結(jié)束.設(shè)棋子跳到第n站的概率為SKIPIF1<0,SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0第三部分能力提升模擬題41.(2023·江蘇揚(yáng)州·統(tǒng)考模擬預(yù)測)定義:在數(shù)列的每相鄰兩項之間插入此兩項的積,形成新的數(shù)列,這樣的操作叫作該數(shù)列的一次“美好成長”.將數(shù)列SKIPIF1<0、SKIPIF1<0進(jìn)行“美好成長”,第一次得到數(shù)列SKIPIF1<0、SKIPIF1<0、SKIPIF1<0;第二次得到數(shù)列SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0;SKIPIF1<0;設(shè)第SKIPIF1<0次“美好成長”后得到的數(shù)列為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,并記SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.?dāng)?shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<042.(2023·福建福州·福建省福州第一中學(xué)校考二模)定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,其導(dǎo)函數(shù)分別為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0是奇函數(shù)B.SKIPIF1<0關(guān)于SKIPIF1<0對稱C.SKIPIF1<0周期為4D.SKIPIF1<043.(2023·湖南·鉛山縣第一中學(xué)校聯(lián)考二模)已知數(shù)列SKIPIF1<0,如果存在常數(shù)SKIPIF1<0,對于任意給定的正數(shù)SKIPIF1<0(無論多小),總存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0時,恒有SKIPIF1<0成立,就稱數(shù)列SKIPIF1<0收斂于SKIPIF1<0(極限為SKIPIF1<0),即數(shù)列SKIPIF1<0為收斂數(shù)列.下列結(jié)論正確的是(

)A.?dāng)?shù)列SKIPIF1<0是一個收斂數(shù)列B.若數(shù)列SKIPIF1<0為收斂數(shù)列,則SKIPIF1<0,使得SKIPIF1<0,都有SKIPIF1<0C.若數(shù)列SKIPIF1<0和SKIPIF1<0為收斂數(shù)列,而數(shù)列SKIPIF1<0一定為收斂數(shù)列D.若數(shù)列SKIPIF1<0和SKIPIF1<0為收斂數(shù)列,則數(shù)列SKIPIF1<0不一定為收斂數(shù)列44.(2024·安徽黃山·屯溪一中??寄M預(yù)測)已知SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項和,SKIPIF1<0,則(

)A.SKIPIF1<0B.當(dāng)SKIPIF1<0時,SKIPIF1<0C.當(dāng)SKIPIF1<0時,SKIPIF1<0為等差數(shù)列D.當(dāng)數(shù)列SKIPIF1<0單調(diào)遞增時,SKIPIF1<0的取值范圍是SKIPIF1<045.(2023·黑龍江哈爾濱·哈爾濱三中??寄M預(yù)測)定義在SKIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0都有SKIPIF1<0,若方程SKIPIF1<0的解構(gòu)成單調(diào)遞增數(shù)列SKIPIF1<0,則下列說法中正確的是(

)A.SKIPIF1<0B.若數(shù)列SKIPIF1<0為等差數(shù)列,則公差為6C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<046.(2023·山東日照·三模)設(shè)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,則(

)A.SKIPIF1<0B.若對任意SKIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0C.若方程SKIPIF1<0恰有三個實數(shù)根,則SKIPIF1<0的取值范圍是SKIPIF1<0D.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0成立,則SKIPIF1<047.(2023·湖北黃岡·浠水縣第一中學(xué)??既#┤鬝KIPIF1<0為函數(shù)SKIPIF1<0的導(dǎo)函數(shù),數(shù)列SKIPIF1<0滿足SKIPIF1<0,則稱SKIPIF1<0為“牛頓數(shù)列”.已知函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0為“牛頓數(shù)列”,其中SKIPIF1<0,則(

)A.SKIPIF1<0B.?dāng)?shù)列SKIPIF1<0是單調(diào)遞減數(shù)列C.SKIPIF1<0D.關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解有無限個48.(2023·浙江·校聯(lián)考二模)已知遞增數(shù)列SKIPIF1<0的各項均為正整數(shù),且其前SKIPIF1<0項和為SKIPIF1<0,則(

)A.存在公差為1的等差數(shù)列SKIPIF1<0,使得SKIPIF1<0B.存在公比為2的等比數(shù)列SKIPIF1<0,使得SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<049.(2023·江蘇蘇州·校聯(lián)考三模)若數(shù)列SKIPIF1<0滿足:對任意的SKIPIF1<0,總存在SKIPIF1<0,使SKIPIF1<0,則稱SKIPIF1<0是“SKIPIF1<0數(shù)列”.則下列數(shù)列是“SKIPIF1<0數(shù)列”的有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<050.(2023·全國·模擬預(yù)測)數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0表示SKIPIF1<0落在區(qū)間SKIPIF1<0的項數(shù),其中SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<051.(2023·廣東廣州·統(tǒng)考三模)設(shè)定義在R上的函數(shù)SKIPIF1<0與SKIPIF1<0的導(dǎo)函數(shù)分別為SKIPIF1<0和SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0為奇函數(shù),則(

).A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<052.(2023·安徽阜陽·安徽省臨泉第一中學(xué)校考三模)數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,該數(shù)列為著名的裴波那契數(shù)列,它是自然界的產(chǎn)物揭示了花瓣的數(shù)量、樹木的分叉、植物種子的排列等植物的生長規(guī)律,則下面結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.?dāng)?shù)列SKIPIF1<0為等比數(shù)列 D.?dāng)?shù)列SKIPIF1<0為等比數(shù)列53.(2023·廣東茂名·統(tǒng)考二模)已知數(shù)列SKIPIF1<0和SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列結(jié)論錯誤的是(

)A.?dāng)?shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列 B.僅有有限項使得SKIPIF1<0C.?dāng)?shù)列SKIPIF1<0是遞增數(shù)列 D.?dāng)?shù)列SKIPIF1<0是遞減數(shù)列54.(2023·湖南長沙·長郡中學(xué)??寄M預(yù)測)已知函數(shù)SKIPIF1<0定義域為SKIPIF1<0,滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0.若函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象的交點為SKIPIF1<0,(其中SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù)),則(

)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<055.(2023·遼寧沈陽·統(tǒng)考三模)已知等比數(shù)列SKIPIF1<0首項SKIPIF1<0,公比為q,前n項和為SKIPIF1<0,前n項積為SKIPIF1<0,函數(shù)SKIPIF1<0SKIPIF1<0,若SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0為單調(diào)遞增的等差數(shù)列B.SKIPIF1<0C.SKIPIF1<0為單調(diào)遞增的等比數(shù)列D.使得SKIPIF1<0成立的n的最大值為656.(2023·湖南長沙·長郡中學(xué)校聯(lián)考模擬預(yù)測)“SKIPIF1<0”表示不大于x的最大整數(shù),例如:SKIPIF1<0,SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論