徐州工程學(xué)院《區(qū)塊鏈技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
徐州工程學(xué)院《區(qū)塊鏈技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
徐州工程學(xué)院《區(qū)塊鏈技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
徐州工程學(xué)院《區(qū)塊鏈技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
徐州工程學(xué)院《區(qū)塊鏈技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁徐州工程學(xué)院

《區(qū)塊鏈技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能在法律領(lǐng)域的輔助決策中具有一定作用。假設(shè)要利用人工智能協(xié)助法官判斷案件,以下關(guān)于其應(yīng)用的描述,哪一項是不正確的?()A.分析大量的法律案例和條文,提供相關(guān)的參考和建議B.利用數(shù)據(jù)挖掘技術(shù)發(fā)現(xiàn)案件中的潛在規(guī)律和模式C.人工智能的判斷結(jié)果可以直接作為最終的法律裁決,無需法官審查D.幫助法官提高決策的效率和準確性,但最終決策權(quán)仍在法官手中2、在人工智能的強化學(xué)習(xí)中,假設(shè)智能體在探索環(huán)境時面臨高風(fēng)險的動作選擇,以下哪種策略能夠平衡探索和利用,以實現(xiàn)更好的學(xué)習(xí)效果?()A.ε-貪心策略,以一定概率隨機選擇動作B.始終選擇最優(yōu)動作,不進行探索C.隨機選擇動作,不考慮之前的經(jīng)驗D.只在初始階段進行探索,之后完全利用3、在人工智能的智能推薦系統(tǒng)中,假設(shè)要為用戶提供個性化的推薦服務(wù),以下關(guān)于推薦算法的描述,正確的是:()A.協(xié)同過濾算法只考慮用戶的歷史行為,不考慮物品的特征B.基于內(nèi)容的推薦算法能夠根據(jù)物品的屬性為用戶推薦相似的物品C.混合推薦算法結(jié)合了多種推薦方法的優(yōu)點,能夠提供更準確的推薦D.以上推薦算法都存在一定的局限性,無法滿足所有用戶的需求4、人工智能中的自動推理技術(shù)旨在讓計算機自動進行邏輯推理。假設(shè)要開發(fā)一個能夠自動證明數(shù)學(xué)定理的系統(tǒng),以下哪個挑戰(zhàn)是最難以克服的?()A.定理的復(fù)雜性B.推理規(guī)則的選擇C.知識的表示和編碼D.計算資源的需求5、在人工智能的發(fā)展過程中,算力的提升起到了重要的推動作用。假設(shè)一個研究團隊需要進行大規(guī)模的人工智能模型訓(xùn)練。以下關(guān)于算力對人工智能的影響的描述,哪一項是不正確的?()A.強大的算力能夠加速模型的訓(xùn)練過程,縮短研發(fā)周期B.更高的算力可以支持更復(fù)雜的模型結(jié)構(gòu)和更多的數(shù)據(jù)處理C.只要有足夠的算力,就可以忽略模型的優(yōu)化和算法的改進D.算力的成本和可獲取性會影響人工智能技術(shù)的應(yīng)用和推廣6、在人工智能的自動駕駛領(lǐng)域,感知模塊負責(zé)對周圍環(huán)境進行理解。假設(shè)要實現(xiàn)對道路上行人的準確檢測,以下哪種技術(shù)可能是最關(guān)鍵的?()A.激光雷達B.毫米波雷達C.攝像頭D.超聲波傳感器7、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)一個農(nóng)場使用人工智能來監(jiān)測作物生長和病蟲害情況。以下關(guān)于人工智能在農(nóng)業(yè)中的應(yīng)用描述,哪一項是錯誤的?()A.通過圖像識別技術(shù)可以及時發(fā)現(xiàn)病蟲害的跡象,采取相應(yīng)的防治措施B.利用傳感器收集的數(shù)據(jù)和分析模型,優(yōu)化灌溉和施肥方案C.人工智能可以完全替代農(nóng)民的經(jīng)驗和判斷,自主管理農(nóng)場的所有生產(chǎn)活動D.結(jié)合天氣預(yù)報和市場需求預(yù)測,制定合理的種植計劃8、人工智能中的智能代理能夠自主地感知環(huán)境、做出決策并執(zhí)行動作。假設(shè)一個智能代理在游戲中與其他玩家交互。以下關(guān)于智能代理的描述,哪一項是錯誤的?()A.智能代理可以通過學(xué)習(xí)和經(jīng)驗積累來改進自己的策略B.它能夠根據(jù)環(huán)境的變化實時調(diào)整自己的行為,以達到目標(biāo)C.智能代理的決策完全基于預(yù)設(shè)的規(guī)則,無法從環(huán)境中學(xué)習(xí)和適應(yīng)D.多個智能代理之間可以通過協(xié)作或競爭來實現(xiàn)更復(fù)雜的任務(wù)9、在人工智能的自動駕駛道德決策問題中,假設(shè)自動駕駛汽車面臨一個無法避免的碰撞場景,以下關(guān)于道德決策的描述,正確的是:()A.可以制定一套通用的道德規(guī)則,讓自動駕駛汽車在所有情況下遵循B.道德決策應(yīng)該完全由汽車制造商決定,用戶沒有參與的權(quán)利C.不同的文化和價值觀可能導(dǎo)致對自動駕駛道德決策的不同看法D.自動駕駛汽車的道德決策不會受到法律和社會輿論的影響10、人工智能在智能推薦系統(tǒng)中的應(yīng)用越來越普遍。假設(shè)要為一個電商平臺開發(fā)推薦系統(tǒng),以下關(guān)于考慮用戶興趣動態(tài)變化的方法,哪一項是最重要的?()A.定期重新訓(xùn)練模型,以反映用戶興趣的最新變化B.只根據(jù)用戶的歷史購買記錄進行推薦,不考慮近期行為C.為用戶推薦始終不變的熱門商品,不考慮其個人興趣D.隨機推薦商品,期望能夠滿足用戶的動態(tài)興趣11、在人工智能的圖像語義分割任務(wù)中,需要將圖像中的每個像素分配到不同的類別,例如將一幅街景圖像中的道路、建筑物、車輛等區(qū)分開來。假設(shè)圖像中的物體邊界模糊、類別多樣,以下哪種方法能夠提高語義分割的精度?()A.使用更高分辨率的圖像進行訓(xùn)練B.采用簡單的分割算法,降低計算復(fù)雜度C.忽略物體邊界的像素,只關(guān)注主要區(qū)域D.不進行任何預(yù)處理,直接對原始圖像進行分割12、在人工智能的文本分類任務(wù)中,例如將新聞文章分類為政治、經(jīng)濟、體育等類別。假設(shè)數(shù)據(jù)集存在類別不平衡的問題,某些類別的樣本數(shù)量遠遠多于其他類別。為了提高分類模型在這種情況下的性能,以下哪種方法是有效的?()A.對少數(shù)類進行過采樣,增加其數(shù)量B.對多數(shù)類進行欠采樣,減少其數(shù)量C.使用不平衡數(shù)據(jù)直接訓(xùn)練模型,不做處理D.只關(guān)注樣本數(shù)量多的類別,忽略少數(shù)類別13、人工智能在教育領(lǐng)域有著創(chuàng)新應(yīng)用。假設(shè)要開發(fā)一個自適應(yīng)學(xué)習(xí)系統(tǒng),以下關(guān)于其應(yīng)用的描述,哪一項是不準確的?()A.根據(jù)學(xué)生的學(xué)習(xí)進度和表現(xiàn),動態(tài)調(diào)整學(xué)習(xí)內(nèi)容和難度B.利用情感分析技術(shù)了解學(xué)生的學(xué)習(xí)情緒,提供相應(yīng)的激勵和支持C.人工智能驅(qū)動的教育系統(tǒng)可以完全替代教師的角色,實現(xiàn)自主學(xué)習(xí)D.結(jié)合虛擬現(xiàn)實和增強現(xiàn)實技術(shù),創(chuàng)造沉浸式的學(xué)習(xí)體驗14、當(dāng)利用人工智能進行智能醫(yī)療影像診斷,例如檢測腫瘤或病變,以下哪種挑戰(zhàn)和問題可能是需要重點解決的?()A.數(shù)據(jù)標(biāo)注的準確性和一致性B.模型的泛化能力和魯棒性C.結(jié)果的解釋和臨床可接受性D.以上都是15、人工智能在農(nóng)業(yè)領(lǐng)域的精準種植方面有潛在應(yīng)用。假設(shè)利用人工智能監(jiān)測農(nóng)作物的生長狀況,以下關(guān)于其應(yīng)用的描述,哪一項是不準確的?()A.通過圖像識別和傳感器數(shù)據(jù),實時獲取農(nóng)作物的生長參數(shù)B.基于數(shù)據(jù)分析預(yù)測病蟲害的發(fā)生,及時采取防治措施C.人工智能可以完全自主地進行農(nóng)作物的種植和管理,無需人工干預(yù)D.結(jié)合氣象數(shù)據(jù)優(yōu)化灌溉和施肥方案,提高資源利用效率16、人工智能在自動駕駛領(lǐng)域有重要的應(yīng)用。假設(shè)一輛自動駕駛汽車在行駛過程中需要做出決策,以下關(guān)于自動駕駛中的人工智能決策的描述,正確的是:()A.自動駕駛汽車的決策完全依賴于預(yù)先設(shè)定的規(guī)則和算法,不具備自主學(xué)習(xí)和適應(yīng)能力B.復(fù)雜的交通環(huán)境和意外情況不會對自動駕駛汽車的決策造成困難,因為其具有完美的感知和預(yù)測能力C.自動駕駛汽車在決策時需要綜合考慮多種因素,如交通規(guī)則、行人行為和車輛狀態(tài)等D.人類駕駛員的干預(yù)對自動駕駛汽車的決策沒有任何幫助,反而可能導(dǎo)致系統(tǒng)混亂17、在人工智能的圖像分割任務(wù)中,需要將圖像劃分成不同的區(qū)域。假設(shè)要對醫(yī)學(xué)影像中的病變區(qū)域進行分割,以下關(guān)于圖像分割技術(shù)的描述,正確的是:()A.傳統(tǒng)的圖像分割方法在處理復(fù)雜的醫(yī)學(xué)影像時效果總是優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的全卷積神經(jīng)網(wǎng)絡(luò)(FCN)在醫(yī)學(xué)圖像分割中能夠自動學(xué)習(xí)特征,具有很大的潛力C.圖像分割的結(jié)果只取決于所使用的算法,與圖像的質(zhì)量和分辨率無關(guān)D.圖像分割技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不需要進一步的研究和改進18、假設(shè)要構(gòu)建一個能夠自主學(xué)習(xí)并改進其性能的人工智能圖像識別系統(tǒng),用于識別不同種類的動物。在訓(xùn)練過程中,需要處理大量的圖像數(shù)據(jù),以下哪種機器學(xué)習(xí)算法可能最為適合?()A.決策樹B.支持向量機C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)D.樸素貝葉斯19、人工智能中的強化學(xué)習(xí)可以應(yīng)用于機器人控制。假設(shè)一個機器人需要通過強化學(xué)習(xí)學(xué)會在復(fù)雜環(huán)境中行走和避障,以下關(guān)于機器人強化學(xué)習(xí)的描述,正確的是:()A.機器人可以在沒有任何先驗知識的情況下,通過隨機探索快速學(xué)會有效的行走和避障策略B.強化學(xué)習(xí)中的獎勵設(shè)置對機器人的學(xué)習(xí)效果沒有關(guān)鍵影響,只要有獎勵就行C.結(jié)合機器人的物理模型和環(huán)境模型,可以為強化學(xué)習(xí)提供更好的先驗知識,加速學(xué)習(xí)過程D.機器人的強化學(xué)習(xí)只適用于簡單的環(huán)境,對于復(fù)雜多變的真實環(huán)境無法應(yīng)用20、在人工智能的情感分析任務(wù)中,需要判斷文本所表達的情感傾向,如積極、消極或中性。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價情感,以下哪種方法在處理大量非結(jié)構(gòu)化文本數(shù)據(jù)時效果較好?()A.基于詞典的方法B.基于機器學(xué)習(xí)的分類方法C.基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)方法D.人工閱讀和判斷21、在人工智能的機器人控制領(lǐng)域,強化學(xué)習(xí)可以讓機器人通過與環(huán)境的交互不斷優(yōu)化自己的行為。假設(shè)一個機器人需要學(xué)會在不同地形上行走,以下哪個因素對于強化學(xué)習(xí)的效果影響最大?()A.環(huán)境的復(fù)雜度B.機器人的初始狀態(tài)C.獎勵函數(shù)的設(shè)計D.機器人的硬件性能22、在人工智能的研究中,遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于醫(yī)學(xué)圖像分析,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型應(yīng)用于新的醫(yī)學(xué)圖像任務(wù),無需任何調(diào)整B.由于數(shù)據(jù)領(lǐng)域差異較大,遷移學(xué)習(xí)在這種情況下不可能有效C.對原模型進行適當(dāng)?shù)奈⒄{(diào),并利用少量的醫(yī)學(xué)圖像數(shù)據(jù)進行再訓(xùn)練,可以提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只能應(yīng)用于相似的數(shù)據(jù)類型和任務(wù),不能跨越不同領(lǐng)域23、假設(shè)要開發(fā)一個能夠在虛擬環(huán)境中進行自主探索和學(xué)習(xí)的人工智能體,例如在游戲中不斷提升能力,以下哪種學(xué)習(xí)機制和策略可能是關(guān)鍵的?()A.無監(jiān)督學(xué)習(xí)B.有監(jiān)督學(xué)習(xí)C.強化學(xué)習(xí)D.以上都是24、對于一個智能聊天機器人,需要理解用戶輸入的自然語言并生成合理的回復(fù)。假設(shè)用戶提出了一個復(fù)雜且含義模糊的問題,聊天機器人要準確理解用戶的意圖并提供有用的回答。以下哪種技術(shù)或方法對于提高聊天機器人的理解和生成能力是關(guān)鍵的?()A.構(gòu)建大規(guī)模的語料庫,通過匹配來生成回復(fù)B.運用深度學(xué)習(xí)模型,如Transformer架構(gòu)進行訓(xùn)練C.基于模板的回復(fù)生成,限制回復(fù)的多樣性D.不考慮上下文,只根據(jù)問題的關(guān)鍵詞生成回復(fù)25、人工智能中的優(yōu)化算法對于模型的訓(xùn)練和性能提升起著關(guān)鍵作用。以下關(guān)于優(yōu)化算法的敘述,不正確的是()A.常見的優(yōu)化算法包括隨機梯度下降(SGD)、Adagrad、Adadelta等B.不同的優(yōu)化算法在收斂速度、穩(wěn)定性和對超參數(shù)的敏感性方面有所不同C.優(yōu)化算法的選擇只取決于模型的架構(gòu),與數(shù)據(jù)特點無關(guān)D.可以通過調(diào)整優(yōu)化算法的參數(shù)來提高模型的訓(xùn)練效果26、在人工智能的應(yīng)用中,自動駕駛是一個具有挑戰(zhàn)性的領(lǐng)域。假設(shè)一輛自動駕駛汽車需要在復(fù)雜的交通環(huán)境中做出安全、高效的駕駛決策。那么,以下關(guān)于自動駕駛中的人工智能技術(shù),哪一項是不準確的?()A.需要依靠多種傳感器獲取環(huán)境信息,如攝像頭、激光雷達等B.基于深度學(xué)習(xí)的目標(biāo)檢測算法可以準確識別道路上的行人和車輛C.自動駕駛系統(tǒng)一旦訓(xùn)練完成,就不需要再進行更新和改進D.決策算法需要考慮交通規(guī)則、道德倫理等多方面因素27、人工智能在教育領(lǐng)域的應(yīng)用逐漸增多,例如個性化學(xué)習(xí)、智能輔導(dǎo)系統(tǒng)等。以下關(guān)于人工智能在教育領(lǐng)域應(yīng)用的說法,錯誤的是()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點,為其提供個性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r監(jiān)測學(xué)生的學(xué)習(xí)狀態(tài),及時給予反饋和指導(dǎo)C.人工智能在教育領(lǐng)域的應(yīng)用可以完全取代教師的作用,實現(xiàn)教育的自動化D.有助于提高教育的效率和質(zhì)量,但也需要關(guān)注學(xué)生的隱私和數(shù)據(jù)安全問題28、在人工智能的文本生成任務(wù)中,假設(shè)要生成一篇邏輯連貫、語言通順的文章,以下關(guān)于文本生成模型的描述,正確的是:()A.基于規(guī)則的文本生成方法能夠保證生成的文章完全符合語法和邏輯B.深度學(xué)習(xí)的文本生成模型可以學(xué)習(xí)語言的模式和規(guī)律,但可能存在重復(fù)和不一致的問題C.文本生成模型的輸出完全由輸入的提示信息決定,沒有任何隨機性D.現(xiàn)有的文本生成模型已經(jīng)能夠生成與人類寫作水平相當(dāng)?shù)奈恼?9、在人工智能的模型訓(xùn)練中,過擬合是一個常見的問題。假設(shè)正在訓(xùn)練一個用于手寫數(shù)字識別的神經(jīng)網(wǎng)絡(luò),以下關(guān)于防止過擬合的方法,哪一項是最有效的?()A.增加訓(xùn)練數(shù)據(jù)的數(shù)量B.減少神經(jīng)網(wǎng)絡(luò)的層數(shù)C.使用更復(fù)雜的激活函數(shù)D.不進行任何處理,認為過擬合不會影響模型性能30、在人工智能的發(fā)展歷程中,深度學(xué)習(xí)技術(shù)的出現(xiàn)帶來了重大突破。假設(shè)我們正在研究圖像識別任務(wù),需要對大量的圖像數(shù)據(jù)進行訓(xùn)練,以識別不同的物體和場景。深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在處理圖像數(shù)據(jù)時具有獨特的優(yōu)勢。那么,以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項是不正確的?()A.能夠自動提取圖像的特征,減少了人工特征工程的工作量B.可以處理任意大小的圖像輸入,無需對圖像進行預(yù)處理C.其訓(xùn)練過程需要大量的計算資源和時間D.對于復(fù)雜的圖像分類任務(wù),準確率通常高于傳統(tǒng)機器學(xué)習(xí)算法二、操作題(本大題共5個小題,共25分)1、(本題5分)使用Python的Scikit-l

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論