2025屆北京市海淀區(qū)市級(jí)名校高三壓軸卷數(shù)學(xué)試卷含解析_第1頁(yè)
2025屆北京市海淀區(qū)市級(jí)名校高三壓軸卷數(shù)學(xué)試卷含解析_第2頁(yè)
2025屆北京市海淀區(qū)市級(jí)名校高三壓軸卷數(shù)學(xué)試卷含解析_第3頁(yè)
2025屆北京市海淀區(qū)市級(jí)名校高三壓軸卷數(shù)學(xué)試卷含解析_第4頁(yè)
2025屆北京市海淀區(qū)市級(jí)名校高三壓軸卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆北京市海淀區(qū)市級(jí)名校高三壓軸卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.()A. B. C. D.2.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.3.已知集合,,則等于()A. B. C. D.4.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.5.已知為一條直線(xiàn),為兩個(gè)不同的平面,則下列說(shuō)法正確的是()A.若,則 B.若,則C.若,則 D.若,則6.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.67.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}8.在正項(xiàng)等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.89.若平面向量,滿(mǎn)足,則的最大值為()A. B. C. D.10.如果,那么下列不等式成立的是()A. B.C. D.11.己知,,,則()A. B. C. D.12.設(shè)M是邊BC上任意一點(diǎn),N為AM的中點(diǎn),若,則的值為()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開(kāi)式中含的系數(shù)為_(kāi)_________.(用數(shù)字填寫(xiě)答案)14.過(guò)點(diǎn),且圓心在直線(xiàn)上的圓的半徑為_(kāi)_________.15.若冪函數(shù)的圖象經(jīng)過(guò)點(diǎn),則其單調(diào)遞減區(qū)間為_(kāi)______.16.過(guò)動(dòng)點(diǎn)作圓:的切線(xiàn),其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)中國(guó)古代數(shù)學(xué)經(jīng)典《數(shù)書(shū)九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)為“陽(yáng)馬”,將四個(gè)面都為直角三角形的四面體稱(chēng)之為“鱉臑”.在如圖所示的陽(yáng)馬中,底面ABCD是矩形.平面,,,以的中點(diǎn)O為球心,AC為直徑的球面交PD于M(異于點(diǎn)D),交PC于N(異于點(diǎn)C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫(xiě)出它每個(gè)面的直角(只需寫(xiě)出結(jié)論);若不是,請(qǐng)說(shuō)明理由;(2)求直線(xiàn)與平面所成角的正弦值.18.(12分)已知點(diǎn),且,滿(mǎn)足條件的點(diǎn)的軌跡為曲線(xiàn).(1)求曲線(xiàn)的方程;(2)是否存在過(guò)點(diǎn)的直線(xiàn),直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),直線(xiàn)與軸分別交于兩點(diǎn),使得?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.19.(12分)在四棱錐的底面是菱形,底面,,分別是的中點(diǎn),.(Ⅰ)求證:;(Ⅱ)求直線(xiàn)與平面所成角的正弦值;(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由.20.(12分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.21.(12分)在中,,是邊上一點(diǎn),且,.(1)求的長(zhǎng);(2)若的面積為14,求的長(zhǎng).22.(10分)已知數(shù)列,其前項(xiàng)和為,滿(mǎn)足,,其中,,,.⑴若,,(),求證:數(shù)列是等比數(shù)列;⑵若數(shù)列是等比數(shù)列,求,的值;⑶若,且,求證:數(shù)列是等差數(shù)列.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】.故選B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.2、D【解析】

通過(guò)計(jì)算,可得,最后計(jì)算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.3、B【解析】

解不等式確定集合,然后由補(bǔ)集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點(diǎn)睛】本題考查集合的綜合運(yùn)算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.4、C【解析】

由題意可知,,由可得出,,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進(jìn)而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域?yàn)椋瑢?duì)恒成立,所以,函數(shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,,則,,則,構(gòu)造函數(shù),其中,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以,.故選:C.【點(diǎn)睛】本題考查代數(shù)式最值的計(jì)算,涉及指對(duì)同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.5、D【解析】A.若,則或,故A錯(cuò)誤;B.若,則或故B錯(cuò)誤;C.若,則或,或與相交;D.若,則,正確.故選D.6、B【解析】

利用等差數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.7、D【解析】

解一元二次不等式化簡(jiǎn)集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧?,故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.8、B【解析】

根據(jù)題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點(diǎn)睛】本題考查了等比數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.9、C【解析】

可根據(jù)題意把要求的向量重新組合成已知向量的表達(dá),利用向量數(shù)量積的性質(zhì),化簡(jiǎn)為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點(diǎn)睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達(dá)是本題的關(guān)鍵點(diǎn).本題屬中檔題.10、D【解析】

利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.11、B【解析】

先將三個(gè)數(shù)通過(guò)指數(shù),對(duì)數(shù)運(yùn)算變形,再判斷.【詳解】因?yàn)?,,所以,故選:B.【點(diǎn)睛】本題主要考查指數(shù)、對(duì)數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.12、B【解析】

設(shè),通過(guò),再利用向量的加減運(yùn)算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.【點(diǎn)睛】本題考查了向量共線(xiàn)及向量運(yùn)算知識(shí),利用向量共線(xiàn)及向量運(yùn)算知識(shí),用基底向量向量來(lái)表示所求向量,利用平面向量表示法唯一來(lái)解決問(wèn)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意得,二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,則,所以得系數(shù)為.14、【解析】

根據(jù)弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,結(jié)合圓心所在直線(xiàn)方程,即可求得圓心坐標(biāo).由兩點(diǎn)間距離公式,即可得半徑.【詳解】因?yàn)閳A經(jīng)過(guò)點(diǎn)則直線(xiàn)的斜率為所以與直線(xiàn)垂直的方程斜率為點(diǎn)的中點(diǎn)坐標(biāo)為所以由點(diǎn)斜式可得直線(xiàn)垂直平分線(xiàn)的方程為,化簡(jiǎn)可得而弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,且圓心在直線(xiàn)上,設(shè)圓心所以圓心滿(mǎn)足解得所以圓心坐標(biāo)為則圓的半徑為故答案為:【點(diǎn)睛】本題考查了直線(xiàn)垂直時(shí)的斜率關(guān)系,直線(xiàn)與直線(xiàn)交點(diǎn)的求法,直線(xiàn)與圓的位置關(guān)系,圓的半徑的求法,屬于基礎(chǔ)題.15、【解析】

利用待定系數(shù)法求出冪函數(shù)的解析式,再求出的單調(diào)遞減區(qū)間.【詳解】解:冪函數(shù)的圖象經(jīng)過(guò)點(diǎn),則,解得;所以,其中;所以的單調(diào)遞減區(qū)間為.故答案為:.【點(diǎn)睛】本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.16、【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿(mǎn)足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線(xiàn)4a+4b?7=0上取一點(diǎn)到原點(diǎn)距離最小,由“垂線(xiàn)段最短”得,直線(xiàn)OM垂直直線(xiàn)4a+4b?7=0,由點(diǎn)到直線(xiàn)的距離公式得:MN的最小值為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析,是,,,,;(2)【解析】

(1)根據(jù)是球的直徑,則,又平面,得到,再由線(xiàn)面垂直的判定定理得到平面,,進(jìn)而得到,再利用線(xiàn)面垂直的判定定理得到平面.(2)以A為原點(diǎn),,,所在直線(xiàn)為x,y,z軸建立直角坐標(biāo)系,設(shè),由,解得,得到,從而得到,然后求得平面的一個(gè)法向量,代入公式求解.【詳解】(1)因?yàn)槭乔虻闹睆?,則,又平面,∴,.∴平面,∴,∴平面.根據(jù)證明可知,四面體是鱉臑.它的每個(gè)面的直角分別是,,,.(2)如圖,以A為原點(diǎn),,,所在直線(xiàn)為x,y,z軸建立直角坐標(biāo)系,則,,,,.M為中點(diǎn),從而.所以,設(shè),則.由,得.由得,即.所以.設(shè)平面的一個(gè)法向量為.由.取,,,得到.記與平面所成角為θ,則.所以直線(xiàn)與平面所成的角的正弦值為.【點(diǎn)睛】本題主要考查線(xiàn)面垂直的判定定理和線(xiàn)面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.18、(1)(2)存在,或.【解析】

(1)由得看成到兩定點(diǎn)的和為定值,滿(mǎn)足橢圓定義,用定義可解曲線(xiàn)的方程.(2)先討論斜率不存在情況是否符合題意,當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)直線(xiàn)點(diǎn)斜式方程,由,可得,再直線(xiàn)與橢圓聯(lián)解,利用根的判別式得到關(guān)于的一元二次方程求解.【詳解】解:設(shè),由,,可得,即為,由,可得的軌跡是以為焦點(diǎn),且的橢圓,由,可得,可得曲線(xiàn)的方程為;假設(shè)存在過(guò)點(diǎn)的直線(xiàn)l符合題意.當(dāng)直線(xiàn)的斜率不存在,設(shè)方程為,可得為短軸的兩個(gè)端點(diǎn),不成立;當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)方程為,由,可得,即,可得,化為,由可得,由在橢圓內(nèi),可得直線(xiàn)與橢圓相交,,則化為,即為,解得,所以存在直線(xiàn)符合題意,且方程為或.【點(diǎn)睛】本題考查求軌跡方程及直線(xiàn)與圓錐曲線(xiàn)位置關(guān)系問(wèn)題.(1)定義法求軌跡方程的思路:應(yīng)用定義法求軌跡方程的關(guān)鍵在于由已知條件推出關(guān)于動(dòng)點(diǎn)的等量關(guān)系式,由等量關(guān)系結(jié)合曲線(xiàn)定義判斷是何種曲線(xiàn),再設(shè)出標(biāo)準(zhǔn)方程,用待定系數(shù)法求解;(2)解決是否存在直線(xiàn)的問(wèn)題時(shí),可依據(jù)條件尋找適合條件的直線(xiàn)方程,聯(lián)立方程消元得出一元二次方程,利用判別式得出是否有解.19、(Ⅰ)見(jiàn)解析;(Ⅱ);(Ⅲ)見(jiàn)解析.【解析】

(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;(Ⅱ)建立空間直角坐標(biāo)系,求得直線(xiàn)的方向向量與平面的一個(gè)法向量,然后求解線(xiàn)面角的正弦值即可;(Ⅲ)假設(shè)滿(mǎn)足題意的點(diǎn)存在,設(shè),由直線(xiàn)與的方向向量得到關(guān)于的方程,解方程即可確定點(diǎn)F的位置.【詳解】(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線(xiàn)的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,以點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則:,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,而,設(shè)直線(xiàn)與平面所成角為,則.(Ⅲ)由題意可得:,假設(shè)滿(mǎn)足題意的點(diǎn)存在,設(shè),,據(jù)此可得:,即:,從而點(diǎn)F的坐標(biāo)為,據(jù)此可得:,,結(jié)合題意有:,解得:.故點(diǎn)F為中點(diǎn)時(shí)滿(mǎn)足題意.【點(diǎn)睛】本題主要考查線(xiàn)面垂直的判定定理與性質(zhì)定理,線(xiàn)面角的向量求法,立體幾何中的探索性問(wèn)題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.20、(1)(2)32【解析】

利用絕對(duì)值不等式的解法求出不等式的解集,得到關(guān)于的方程,求出的值即可;由知可得,,利用三個(gè)正數(shù)的基本不等式,構(gòu)造和是定值即可求出的最大值.【詳解】(1)∵,,所以不等式的解集為,即為不等式的解集為,∴的解集為,即不等式的解集為,化簡(jiǎn)可得,不等式的解集為,所以,即.(2)∵,∴.又∵,,,∴,當(dāng)且僅當(dāng),等號(hào)成立,即,,時(shí),等號(hào)成立,∴的最大值為32.【點(diǎn)睛】本題主要考查含有兩個(gè)絕對(duì)值不等式的解法和三個(gè)正數(shù)的基本不等式的靈活運(yùn)用;其中利用構(gòu)造出和為定值即為定值是求解本題的關(guān)鍵;基本不等式取最值的條件:一正二定三相等是本題的易錯(cuò)點(diǎn);屬于中檔題.21、(1)1;(2)5.【解析】

(1)由同角三角函數(shù)關(guān)系求得,再由兩角差的正弦公式求得,最后由正弦定理構(gòu)建方程,求得答案.(2)在中,由正弦定理構(gòu)建方程求得AB,再由任意三角形的面積公式構(gòu)建方程求得BC,最后由余弦定理構(gòu)建方程求得AC.【詳解】(1)據(jù)題意,,且,所以.所以.在中,據(jù)正弦定理可知,,所以.(2)在中,據(jù)正弦定理可知,所以.因?yàn)榈拿娣e為14,所以,即,得.在中,據(jù)余弦定理可知,,所以.【點(diǎn)睛】本題考查由正弦定理與余弦定理解三角形,還考查了由同角三角函數(shù)關(guān)系和兩角差的正弦公式化簡(jiǎn)求值,屬于簡(jiǎn)單題.22、(1)見(jiàn)解析(2)(3)見(jiàn)解析【解析】試題分析:(1)(),所以,故數(shù)列是等比數(shù)列;(2)利用特殊值法,得,故;(3)得,所以,得,可證數(shù)列是等差數(shù)列.試題解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論