版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山東實(shí)驗(yàn)中學(xué)高三(最后沖刺)數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.32.已知的內(nèi)角、、的對(duì)邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.3.已知,其中是虛數(shù)單位,則對(duì)應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.4.a(chǎn)為正實(shí)數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.15.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.6.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.7.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)8.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值為()A. B. C. D.9.若點(diǎn)是角的終邊上一點(diǎn),則()A. B. C. D.10.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.11.已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn)(設(shè)點(diǎn)位于第一象限),過(guò)點(diǎn),分別作拋物線的準(zhǔn)線的垂線,垂足分別為點(diǎn),,拋物線的準(zhǔn)線交軸于點(diǎn),若,則直線的斜率為A.1 B. C. D.12.如圖,在底面邊長(zhǎng)為1,高為2的正四棱柱中,點(diǎn)是平面內(nèi)一點(diǎn),則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上移動(dòng)時(shí),的內(nèi)心的軌跡方程為__________.14.某中學(xué)舉行了一次消防知識(shí)競(jìng)賽,將參賽學(xué)生的成績(jī)進(jìn)行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數(shù)是80,則成績(jī)?cè)趨^(qū)間的學(xué)生人數(shù)是__________.15.記為數(shù)列的前項(xiàng)和,若,則__________.16.已知函數(shù),則過(guò)原點(diǎn)且與曲線相切的直線方程為____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列,,數(shù)列滿足,n.(1)若,,求數(shù)列的前2n項(xiàng)和;(2)若數(shù)列為等差數(shù)列,且對(duì)任意n,恒成立.①當(dāng)數(shù)列為等差數(shù)列時(shí),求證:數(shù)列,的公差相等;②數(shù)列能否為等比數(shù)列?若能,請(qǐng)寫出所有滿足條件的數(shù)列;若不能,請(qǐng)說(shuō)明理由.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線交曲線于兩點(diǎn),為中點(diǎn).(1)求曲線的直角坐標(biāo)方程和點(diǎn)的軌跡的極坐標(biāo)方程;(2)若,求的值.19.(12分)已知函數(shù),.(1)當(dāng)時(shí),求不等式的解集;(2)若函數(shù)的圖象與軸恰好圍成一個(gè)直角三角形,求的值.20.(12分)在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:(2)若成等比數(shù)列,求a的值。21.(12分)在直角坐標(biāo)系中,曲線的標(biāo)準(zhǔn)方程為.以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線的直角坐標(biāo)方程;(2)若點(diǎn)在曲線上,點(diǎn)在直線上,求的最小值.22.(10分)在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點(diǎn).(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;(2)若點(diǎn)的極坐標(biāo)為,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)極值點(diǎn)處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計(jì)算即可.【詳解】解:由已知得,,,經(jīng)檢驗(yàn)滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問(wèn)題的基本思路,屬于中檔題.2、B【解析】
延長(zhǎng)到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【詳解】解:延長(zhǎng)到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點(diǎn)睛】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.3、C【解析】
利用復(fù)數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,,.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.4、B【解析】
,選B.5、B【解析】
由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計(jì)算可得.【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.【點(diǎn)睛】本題考查等差數(shù)列的下標(biāo)和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.6、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.7、C【解析】
先化簡(jiǎn)N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因?yàn)镹={x|x(x+3)≤0}={x|-3≤x≤0},又因?yàn)镸={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.8、C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.9、A【解析】
根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點(diǎn)是角的終邊上一點(diǎn),根據(jù)三角函數(shù)的定義,可得,則,故選A.【點(diǎn)睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡(jiǎn)、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準(zhǔn)確化簡(jiǎn)、計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、A【解析】
觀察可知,這個(gè)幾何體由兩部分構(gòu)成,:一個(gè)半圓柱體,底面圓的半徑為1,高為2;一個(gè)半球體,半徑為1,按公式計(jì)算可得體積。【詳解】設(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A。【點(diǎn)睛】本題通過(guò)三視圖考察空間識(shí)圖的能力,屬于基礎(chǔ)題。11、C【解析】
根據(jù)拋物線定義,可得,,又,所以,所以,設(shè),則,則,所以,所以直線的斜率.故選C.12、A【解析】
根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計(jì)算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長(zhǎng)為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點(diǎn)睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
考查更為一般的問(wèn)題:設(shè)P為橢圓C:上的動(dòng)點(diǎn),為橢圓的兩個(gè)焦點(diǎn),為△PF1F2的內(nèi)心,求點(diǎn)I的軌跡方程.解法一:如圖,設(shè)內(nèi)切圓I與F1F2的切點(diǎn)為H,半徑為r,且F1H=y,F(xiàn)2H=z,PF1=x+y,PF2=x+z,,則.直線IF1與IF2的斜率之積:,而根據(jù)海倫公式,有△PF1F2的面積為因此有.再根據(jù)橢圓的斜率積定義,可得I點(diǎn)的軌跡是以F1F2為長(zhǎng)軸,離心率e滿足的橢圓,其標(biāo)準(zhǔn)方程為.解法二:令,則.三角形PF1F2的面積:,其中r為內(nèi)切圓的半徑,解得.另一方面,由內(nèi)切圓的性質(zhì)及焦半徑公式得:從而有.消去θ得到點(diǎn)I的軌跡方程為:.本題中:,代入上式可得軌跡方程為:.14、30【解析】
根據(jù)頻率直方圖中數(shù)據(jù)先計(jì)算樣本容量,再計(jì)算成績(jī)?cè)?0~100分的頻率,繼而得解.【詳解】根據(jù)直方圖知第二組的頻率是,則樣本容量是,又成績(jī)?cè)?0~100分的頻率是,則成績(jī)?cè)趨^(qū)間的學(xué)生人數(shù)是.故答案為:30【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生綜合分析,數(shù)據(jù)處理,數(shù)形運(yùn)算的能力,屬于基礎(chǔ)題.15、-254【解析】
利用代入即可得到,即是等比數(shù)列,再利用等比數(shù)列的通項(xiàng)公式計(jì)算即可.【詳解】由已知,得,即,所以又,即,,所以是以-4為首項(xiàng),2為公比的等比數(shù)列,所以,即,所以。故答案為:【點(diǎn)睛】本題考查已知與的關(guān)系求,考查學(xué)生的數(shù)學(xué)運(yùn)算求解能力,是一道中檔題.16、【解析】
設(shè)切點(diǎn)坐標(biāo)為,利用導(dǎo)數(shù)求出曲線在切點(diǎn)的切線方程,將原點(diǎn)代入切線方程,求出的值,于此可得出所求的切線方程.【詳解】設(shè)切點(diǎn)坐標(biāo)為,,,,則曲線在點(diǎn)處的切線方程為,由于該直線過(guò)原點(diǎn),則,得,因此,則過(guò)原點(diǎn)且與曲線相切的直線方程為,故答案為.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查過(guò)點(diǎn)作函數(shù)圖象的切線方程,求解思路是:(1)先設(shè)切點(diǎn)坐標(biāo),并利用導(dǎo)數(shù)求出切線方程;(2)將所過(guò)點(diǎn)的坐標(biāo)代入切線方程,求出參數(shù)的值,可得出切點(diǎn)的坐標(biāo);(3)將參數(shù)的值代入切線方程,可得出切線的方程.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)①見(jiàn)解析②數(shù)列不能為等比數(shù)列,見(jiàn)解析【解析】
(1)根據(jù)數(shù)列通項(xiàng)公式的特點(diǎn),奇數(shù)項(xiàng)為等差數(shù)列,偶數(shù)項(xiàng)為等比數(shù)列,選用分組求和的方法進(jìn)行求解;(2)①設(shè)數(shù)列的公差為,數(shù)列的公差為,當(dāng)n為奇數(shù)時(shí),得出;當(dāng)n為偶數(shù)時(shí),得出,從而可證數(shù)列,的公差相等;②利用反證法,先假設(shè)可以為等比數(shù)列,結(jié)合題意得出矛盾,進(jìn)而得出數(shù)列不能為等比數(shù)列.【詳解】(1)因?yàn)?,,所以,且,由題意可知,數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,數(shù)列是首項(xiàng)和公比均為4的等比數(shù)列,所以;(2)①證明:設(shè)數(shù)列的公差為,數(shù)列的公差為,當(dāng)n為奇數(shù)時(shí),,若,則當(dāng)時(shí),,即,與題意不符,所以,當(dāng)n為偶數(shù)時(shí),,,若,則當(dāng)時(shí),,即,與題意不符,所以,綜上,,原命題得證;②假設(shè)可以為等比數(shù)列,設(shè)公比為q,因?yàn)?,所以,所以,,因?yàn)楫?dāng)時(shí),,所以當(dāng)n為偶數(shù),且時(shí),,即當(dāng)n為偶數(shù),且時(shí),不成立,與題意矛盾,所以數(shù)列不能為等比數(shù)列.【點(diǎn)睛】本題主要考查數(shù)列的求和及數(shù)列的綜合,數(shù)列求和時(shí)一般是結(jié)合通項(xiàng)公式的特征選取合適的求和方法,數(shù)列綜合題要回歸基本量,充分挖掘題目已知信息,細(xì)思細(xì)算,本題綜合性較強(qiáng),難度較大,側(cè)重考查邏輯推理和數(shù)學(xué)運(yùn)算的核心素養(yǎng).18、(1),;(2)或【解析】
(1)根據(jù)曲線的參數(shù)方程消去參數(shù),可得曲線的直角坐標(biāo)方程,再由,,可得點(diǎn)的軌跡的極坐標(biāo)方程;(2)將曲線極坐標(biāo)方程求,與直線極坐標(biāo)方程聯(lián)立,消去,得到關(guān)于的二次方程,由的幾何意義可求出,而(1)可知,然后列方程可求出的值.【詳解】(1)曲線的直角坐標(biāo)方程為,圓的圓心為,設(shè),所以,則由,即為點(diǎn)軌跡的極坐標(biāo)方程.(2)曲線的極坐標(biāo)方程為,將與曲線的極坐標(biāo)方程聯(lián)立得,,設(shè),所以,,由,即,令,上述方程可化為,解得.由,所以,即或.【點(diǎn)睛】此題考查參數(shù)方程與普通方程的互化,極坐標(biāo)方程與直角坐標(biāo)方程的互化,利用極坐標(biāo)求點(diǎn)的軌跡方程,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.19、(1)(2)【解析】
(1)當(dāng)時(shí),,由可得,(所以,解得,所以不等式的解集為.(2)由題可得,因?yàn)楹瘮?shù)的圖象與軸恰好圍成一個(gè)直角三角形,所以,解得,當(dāng)時(shí),,函數(shù)的圖象與軸沒(méi)有交點(diǎn),不符合題意;當(dāng)時(shí),,函數(shù)的圖象與軸恰好圍成一個(gè)直角三角形,符合題意.綜上,可得.20、(1)l的普通方程;C的直角坐標(biāo)方程;(2).【解析】
(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用消去參數(shù)即可得到直線的直角坐標(biāo)方程;(2)將直線的參數(shù)方程,代入曲線的方程,利用參數(shù)的幾何意義即可得出,從而建立關(guān)于的方程,求解即可.【詳解】(1)由直線l的參數(shù)方程消去參數(shù)t得,,即為l的普通方程由,兩邊乘以得為C的直角坐標(biāo)方程.(2)將代入拋物線得由已知成等比數(shù)列,即,,,整理得(舍去)或.【點(diǎn)睛】熟練掌握極坐標(biāo)與直角坐標(biāo)的互化公式、方程思想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關(guān)鍵.21、(1)(2)【解析】
(1)直接利用極坐標(biāo)公式計(jì)算得到答案(2)設(shè),,根據(jù)三角函數(shù)的有界性得到答案.【詳解】(1)因?yàn)?,所以,因?yàn)樗灾本€的直角坐標(biāo)方程為.(2)由題意可設(shè),則點(diǎn)到直線的距離.因?yàn)?,所以,因?yàn)椋实淖钚≈禐?【點(diǎn)睛】本題考查了極坐標(biāo)方程,參數(shù)方程,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.22、(1)曲線的直角坐標(biāo)方程為即,直線的普通方程為;(2).【解析】
(1)利用代入法消去參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標(biāo)方程兩邊同乘以利用即可得曲線的直角坐標(biāo)方程;(2)直線的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版集裝箱拖車運(yùn)輸綠色物流解決方案服務(wù)合同2篇
- 二零二五年商業(yè)秘密保護(hù)法務(wù)咨詢合同
- 2024年適用:瀝青路面鋪設(shè)合作協(xié)議
- 2025版金融機(jī)構(gòu)出納人員責(zé)任保障合同3篇
- 2024版二手房屋買賣合同協(xié)議規(guī)定
- 承德應(yīng)用技術(shù)職業(yè)學(xué)院《農(nóng)產(chǎn)品國(guó)際貿(mào)易》2023-2024學(xué)年第一學(xué)期期末試卷
- 承德醫(yī)學(xué)院《社會(huì)福利制度》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024汽車維修配件質(zhì)量控制協(xié)議范本3篇
- 二零二五年度出口信用保險(xiǎn)反擔(dān)保保證合同范本3篇
- 《花的學(xué)校》教學(xué)設(shè)計(jì)精要
- 簡(jiǎn)易呼吸器使用及檢測(cè)評(píng)分表
- 康復(fù)科進(jìn)修匯報(bào)
- 2024-2030年中國(guó)水培蔬菜行業(yè)發(fā)展分析及投資前景預(yù)測(cè)研究報(bào)告
- 2023風(fēng)電機(jī)組預(yù)應(yīng)力混凝土塔筒與基礎(chǔ)結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)
- 3D打印技術(shù)在醫(yī)療領(lǐng)域的應(yīng)用
- 人員招聘的程序與信息發(fā)布
- 倉(cāng)庫(kù)班長(zhǎng)年終總結(jié)
- 2024-2029年中國(guó)IP授權(quán)行業(yè)市場(chǎng)現(xiàn)狀分析及競(jìng)爭(zhēng)格局與投資發(fā)展研究報(bào)告
- 北京市海淀區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期期末英語(yǔ)試題
- 2024年湖北省漢江國(guó)有資本投資集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 廣州市九區(qū)聯(lián)考2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)測(cè)數(shù)學(xué)試卷(原卷版)
評(píng)論
0/150
提交評(píng)論