2024七年級(jí)上第二章有理數(shù)_第1頁
2024七年級(jí)上第二章有理數(shù)_第2頁
2024七年級(jí)上第二章有理數(shù)_第3頁
2024七年級(jí)上第二章有理數(shù)_第4頁
2024七年級(jí)上第二章有理數(shù)_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一、課題§2.1數(shù)怎么不夠用了(I)

二、教學(xué)目標(biāo)

1.使學(xué)生了解正數(shù)與負(fù)數(shù)是從實(shí)際須要中產(chǎn)生的:

2.使學(xué)生理解正數(shù)與負(fù)數(shù)的概念,并會(huì)推斷一個(gè)數(shù)是正數(shù)還是負(fù)數(shù):

3.初步會(huì)用正負(fù)數(shù)表示具有相反意義的量;

4.在負(fù)數(shù)概念的形成過程中,培育學(xué)生的視察、歸納與概括的實(shí)力.

三、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn)難點(diǎn)

負(fù)數(shù)的意義.負(fù)數(shù)的意義.

四、教學(xué)手段

現(xiàn)代課堂教學(xué)手段

五、教學(xué)方法

啟發(fā)式教學(xué)

六、教學(xué)過程

(一)、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

大家知道,數(shù)學(xué)與數(shù)是分不開的,它是一門探討數(shù)的學(xué)問.現(xiàn)在我們一起來回憶一下,小學(xué)里已經(jīng)學(xué)

過哪些類型的數(shù)?

學(xué)生答后,老師指出:小學(xué)里學(xué)過的數(shù)可以分為三類:自然數(shù)(正整數(shù))、分?jǐn)?shù)和零(小數(shù)包括在分?jǐn)?shù)之

中),它們都是由于實(shí)際須要而產(chǎn)生的.

為了表示一個(gè)人、兩只手、……,我們用到整數(shù)1,2,……

4.87、..

為了表示“沒有人”、“沒有羊”、……,我們要用到0.

但在實(shí)際生活中,還有很多量不能用上述所說的自然數(shù),零或分?jǐn)?shù)、小數(shù)表示.

(二)、師生共同探討形成正負(fù)數(shù)概念

某市某一天的最高溫度是零上5C,最低溫度是零下5C.要表示這兩個(gè)溫度,假如只用小學(xué)學(xué)過的數(shù),

都記作5℃,就不能把它們區(qū)分消晰.它們是具有相反意義的兩個(gè)量.

現(xiàn)實(shí)生活中,像這樣的相反意義的量還有很多.

例如I,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是

相反的.

和“運(yùn)出”,其意義是相反的.

同學(xué)們能舉例子嗎?

學(xué)生回答后,老師提出:怎樣區(qū)分相反意義的量才好呢?

待學(xué)生思索后,請(qǐng)學(xué)生回答、評(píng)議、補(bǔ)充.

老師小結(jié):同學(xué)們成了獨(dú)劃家.甲同學(xué)說,用不同顏色來區(qū)分,比如,紅色5c表示零下5C,黑色5c

表示零上5-C:乙同學(xué)說,在數(shù)字前面加不同符號(hào)來區(qū)分,比如,△5℃表示零上5C,X5C表示零下

5c…….其實(shí),中國(guó)古代數(shù)學(xué)家就曾經(jīng)采納不同的顏色來區(qū)分,古時(shí)叫做“正算黑,負(fù)算赤”.如今這種

方法在記賬的時(shí)候還運(yùn)用.所謂“赤字”,就是這樣來的.

現(xiàn)在,數(shù)學(xué)中采納符號(hào)來區(qū)分,規(guī)定零上5℃記作+5℃(讀作正5匕)或5C,把零下記作-5℃(讀作

負(fù)5℃).這樣,只要在小學(xué)里學(xué)過的數(shù)前面加上“+”或“-”號(hào),就把兩個(gè)相反意義的量簡(jiǎn)明地表示出來

了.

讓學(xué)生用同樣的方法表示出前面例子中具有相反意義的量:

高于海平面8848米,記作+8848米:低于海平面155米,記作-155米:

老師講解:什么叫做正數(shù)?什么叫做負(fù)數(shù)?強(qiáng)調(diào),數(shù)0既不是正數(shù),也不是負(fù)數(shù),它是正、負(fù)數(shù)的界

限,表示“基準(zhǔn)”的數(shù),零不是表示“沒有”,它表示一個(gè)實(shí)際存在的數(shù)量.并指出,正數(shù),負(fù)數(shù)的

“一”的符號(hào)是表示性質(zhì)相反的量,符號(hào)寫在數(shù)字前面,這種符號(hào)叫做性質(zhì)符號(hào).

三、運(yùn)用舉例變式練習(xí)

例全部的正數(shù)組成正數(shù)集合,全部的負(fù)數(shù)組成負(fù)數(shù)集合.把下列各數(shù)中的正數(shù)和負(fù)數(shù)分別填在表示

正數(shù)集合和負(fù)數(shù)集合的圈里:

此例由學(xué)生口答,老師板書,留意加上省略號(hào),說明這是因?yàn)檎ㄘ?fù))數(shù)集合中包含全部正(負(fù))數(shù),而

我們這里只填了其中一部分.然后,指出不僅可以用圈表示集合,也可以用大括號(hào)表示集合.

課堂練習(xí)

隨意寫出6個(gè)正數(shù)與6個(gè)負(fù)數(shù),并分別把它們迫入相應(yīng)的大括號(hào)里:

正數(shù)集合:{…},

負(fù)數(shù)集合:{…}.

(四)、小結(jié)

由于實(shí)際生活中存在著很多具有相反意義的量,因此產(chǎn)生了正數(shù)與負(fù)數(shù).正數(shù)是大于0的數(shù),負(fù)數(shù)就

是在正數(shù)前面加上“-”號(hào)的數(shù).0既不是正數(shù),也不是負(fù)數(shù),0可以表示沒有,也可以表示一個(gè)實(shí)際存在

的數(shù)量,如0C.

七、練習(xí)設(shè)計(jì)

1.北京一月份的日平均氣溫大約是零下3?C,用負(fù)數(shù)表示這個(gè)溫度.

2.在小學(xué)地理圖冊(cè)的世界地形圖上,可以看到亞洲西部地中海旁有一個(gè)死海湖,圖中標(biāo)著392,這表

明死海的湖面與海平面相比的高度是怎樣的?

3.在下列各數(shù)中,哪些是正數(shù)?哪些是負(fù)數(shù)?

-3.6,-4,9651,-0.1.

4.假如-50元表示支出50元,那么+200元表示什么?

5.河道中的水位比正常7K位低0.2米記作-0.2米,那么比正常水位高0.1米記作什么?

6.假如自行車車條的長(zhǎng)度比標(biāo)準(zhǔn)長(zhǎng)度長(zhǎng)2型米記作+2型米,那么比標(biāo)準(zhǔn)長(zhǎng)度短3型米記作什么?

7.一物體可以左右移動(dòng),設(shè)向右為正,問:

(1)向左移動(dòng)12米應(yīng)記作什么?(2)“記作8米”表明什么?

八、板書設(shè)計(jì)

2.1數(shù)怎么不夠用了(1)

(一)學(xué)問回顧(四)例題解析(六)課堂小結(jié)

(二)視察發(fā)覺例1、例2

(=)解方程(五)課堂練習(xí)練習(xí)設(shè)計(jì)

九、教學(xué)后記

這節(jié)課是在小學(xué)里學(xué)過的數(shù)的基礎(chǔ)上,從表示具有相反意義的量引進(jìn)負(fù)數(shù)的.

從內(nèi)容上講.位數(shù)比非魚數(shù)耍抽象、難理解.因此學(xué)生通過這節(jié)課只能對(duì)負(fù)數(shù)概念有初步的理解,使

學(xué)牛.駕馭正負(fù)數(shù)的記法和它的描述性定義,要求不能過高.對(duì)有理數(shù)的深化理解將在以后的學(xué)習(xí)中逐步加

強(qiáng).

在教學(xué)方法和教學(xué)語言的選擇上,盡可能留意中小學(xué)的連接,既不違反科學(xué)性,又符合可接受性原則,

老師在課堂上要起好主導(dǎo)作用,并讓學(xué)生有充分的活動(dòng)機(jī)會(huì),使得課堂氣氛有簇新感.所以這節(jié)課實(shí)行了

在老師的啟發(fā)引導(dǎo)卜.,師生共同探究解決的途徑,以談話法為主.同時(shí),老師的語言要盡量?jī)和?/p>

第十五課時(shí)

一、課題§2.1數(shù)怎么不夠用了(2)

二、教學(xué)目標(biāo)

1.使學(xué)生理解有理數(shù)的意義,并能將給出的有理數(shù)進(jìn)行分類:

2.培育學(xué)生樹立分類探討的息想.

三、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn)難點(diǎn)

有理數(shù)包括哪些數(shù).有理數(shù)的分類及其分類的標(biāo)準(zhǔn).

四、教學(xué)手段

現(xiàn)代課堂教學(xué)手段

五、教學(xué)方法

啟發(fā)式教學(xué)

六、教學(xué)過程

(一)、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

1.什么是正、負(fù)數(shù)?

2.如何用正、負(fù)數(shù)表示具有相反意義的量?數(shù)。表示量的意義是什么?舉例說明.

3.任何一個(gè)正數(shù)都比0大嗎?任何一個(gè)負(fù)數(shù)都比0小嗎?

4.什么是整數(shù)?什么是分?jǐn)?shù)?

依據(jù)學(xué)生的回答引出新課.

(二)、講授新課

1.給出新的整數(shù)、分?jǐn)?shù)概念

引進(jìn)負(fù)數(shù)后,數(shù)的范圍擴(kuò)大了.過去我們說整數(shù)只包括自然數(shù)和零,引進(jìn)負(fù)數(shù)后,我們把自然數(shù)叫做

正整數(shù),自然數(shù)前加上負(fù)號(hào)的數(shù)叫做負(fù)整數(shù),因而整數(shù)包括正整數(shù)(自然數(shù))、負(fù)整數(shù)和零,同樣分?jǐn)?shù)包括

正分?jǐn)?shù)、負(fù)分?jǐn)?shù),即

2.給出有理數(shù)概念

整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù),即

有理數(shù)是英語“Rationalnumber”的譯名,更準(zhǔn)確的譯名應(yīng)譯作“比

3.有理數(shù)的分類

為了便于探討某些問題,常常須要將有理數(shù)進(jìn)行分類,須要不同,分類的方法也常常不同依據(jù)有理數(shù)

的定義可將有理數(shù)分成兩類:整數(shù)和分?jǐn)?shù).有理數(shù)還有沒有其他的分類方法?

待學(xué)生思索后,請(qǐng)學(xué)生問答、評(píng)議、補(bǔ)充.

老師小結(jié):按有理數(shù)的符號(hào)分為三類:正有理數(shù)、負(fù)有理數(shù)加零,簡(jiǎn)稱正數(shù)、負(fù)數(shù)和零,即

并指出,在有理數(shù)范圍內(nèi),正數(shù)和零統(tǒng)稱為非負(fù)數(shù).并向?qū)W生強(qiáng)調(diào):分類可以依據(jù)不同須要,用不同

的分類標(biāo)準(zhǔn),但必需對(duì)探討對(duì)象不重不漏地分類.

(三)、運(yùn)用舉例變式練習(xí)

例1將下列數(shù)按上述兩種標(biāo)準(zhǔn)分類:

例2下列各數(shù)是正數(shù)還是負(fù)數(shù),是整數(shù)還達(dá)分?jǐn)?shù):

課堂練習(xí)

25,TOO按兩種標(biāo)準(zhǔn)分類.

2.卜列各數(shù)是正數(shù)還是負(fù)數(shù),是整數(shù)還是分?jǐn)?shù)?

(四)、小結(jié)

老師引導(dǎo)學(xué)生回答如下問題:本節(jié)課學(xué)習(xí)了哪些基本內(nèi)容?學(xué)習(xí)了什么數(shù)學(xué)思想方法?應(yīng)留意什么問

題?

七、練習(xí)設(shè)計(jì)

1.把下列各數(shù)填在相應(yīng)的括號(hào)里(將各數(shù)用逗號(hào)分開):

正整數(shù)集合:{…}:

負(fù)整數(shù)集合:{…}:

五、教學(xué)方法

啟發(fā)式教學(xué)

六、教學(xué)過程

(一)、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題

1.小學(xué)里曾用“射線”上的點(diǎn)來表示數(shù),你能在射線上表示出1和2嗎?

2.用“射線”能不能表云有理數(shù)?為什么?

3.你認(rèn)為把“射線”做怎樣的改動(dòng),才能用來表示有理數(shù)呢?

待學(xué)生回答后,老師指出,這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容一一數(shù)軸.

(二)、講授新課

讓學(xué)生視察掛圖一一放大的溫度計(jì),同時(shí)老師賜予語言指導(dǎo):利用溫度計(jì)可以測(cè)量溫度,在溫度計(jì)上

有刻度,刻度上標(biāo)有讀數(shù),依據(jù)溫度計(jì)的液面的不同位置就可以讀出不同的數(shù),從而得到所測(cè)的溫度.在

0上10個(gè)刻度,表示10℃;在。下5個(gè)刻度,表示-5c.

與溫度計(jì)類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.詳

細(xì)方法如下(邊說邊畫):

1.畫一條水平的直線,在這條直線上任取一點(diǎn)作為原點(diǎn)(通常取適中的位置.,假如所需的都是正數(shù),

也可偏向左邊)用這點(diǎn)表示0(相當(dāng)于溫度計(jì)上的0C):

2.規(guī)定直線上從原點(diǎn)向右為正方向(箭頭所指的方向),那么從原點(diǎn)向左為負(fù)方向(相當(dāng)于溫度計(jì)上0C

以上為正,0℃以下為負(fù));

3.選取適當(dāng)?shù)拈L(zhǎng)度作為單位長(zhǎng)度,在直線上,從原點(diǎn)向右,每隔一個(gè)長(zhǎng)度單位取一點(diǎn),依次表示為1,

2,3,…從原點(diǎn)向左,每隔一個(gè)長(zhǎng)度單位取一點(diǎn),依次表示為T,-2,-3,…

提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個(gè)數(shù))

在此基礎(chǔ)上,給出數(shù)軸的定義,即規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸.

進(jìn)而提問學(xué)生:在數(shù)軸匕已知一點(diǎn)P表示數(shù)-5,假如數(shù)軸上的原點(diǎn)不選在原來位置,而改選在另一

位置.,那么P對(duì)應(yīng)的數(shù)是否還是-5?假如單位長(zhǎng)度變更呢?假如直線的正方向變更呢?

通過上述提問,向?qū)W生指出:數(shù)軸的三要素一一原點(diǎn)、正方向和單位長(zhǎng)度,缺一不行.

三、運(yùn)用舉例變式練習(xí)

例1畫一個(gè)數(shù)軸,并在數(shù)軸上畫出表示下列各數(shù)的點(diǎn):

例2指出數(shù)軸上A,B,C,D,E各點(diǎn)分別表示什么數(shù).

課堂練習(xí)

說出下面數(shù)軸.卜.A,B,C,D,0,M各點(diǎn)表示什么數(shù)?

最終引導(dǎo)學(xué)生得出結(jié)論:正有理數(shù)可用原點(diǎn)右邊的點(diǎn)表示,負(fù)有理數(shù)可用原點(diǎn)左邊的點(diǎn)表示,零用原

點(diǎn)表示.

(四)、小結(jié)

指導(dǎo)學(xué)生閱讀教材后指出:數(shù)軸是特別重要的數(shù)學(xué)工具,它使數(shù)和直線上的點(diǎn)建立了對(duì)應(yīng)關(guān)系,它揭

示了數(shù)和形之間的內(nèi)在朕系,為我們探討問題供應(yīng)了新的方法.

本節(jié)課要求同學(xué)們能駕馭數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提示同學(xué)們,全部的有理數(shù)都可

用數(shù)軸上的點(diǎn)來表示,但是反過來不成立,即數(shù)軸上的點(diǎn)并不是都表示有理數(shù),至于數(shù)軸上的哪些點(diǎn)不能

表示有理數(shù),這個(gè)問題以后再探討.

七、練習(xí)設(shè)計(jì)

1.在下面數(shù)軸上:

(1)分別指出表示-2,3,-4,0,1各數(shù)的點(diǎn).

(2)A,H,D,E,0各點(diǎn)分別表示什么數(shù)?

2.在下面數(shù)軸上,A,B,C,D各點(diǎn)分別表示什么數(shù)?

3.下列各小題先分別畫H數(shù)軸,然后在數(shù)軸卜.畫出表示大括號(hào)內(nèi)的?組數(shù)的點(diǎn):

(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};

八、板書設(shè)計(jì)

2.2數(shù)軸(1)

(-)學(xué)問回顧(三)例題解析(五)課堂小結(jié)

例1、例2

(-)視察發(fā)覺(四)課堂練習(xí)練習(xí)設(shè)計(jì)

九、教學(xué)后記

從學(xué)生已有學(xué)問、閱歷動(dòng)身探討新問題,是我們組織教學(xué)的一個(gè)重要原則.小學(xué)里曾學(xué)過利用射線上

的點(diǎn)來表示數(shù),為此我們可引導(dǎo)學(xué)生思索:把射線怎樣做些改進(jìn)就可以用來表示有理數(shù)?伴以溫度計(jì)為模

型,引出數(shù)軸的概念.教學(xué)中,數(shù)軸的三要素中的每?要素都要細(xì)致分析它的作用,使學(xué)生從直觀村識(shí)卜.

升到理性相識(shí).直線、數(shù)軸都是特別抽象的數(shù)學(xué)概念,當(dāng)然對(duì)初學(xué)者不宜講的過多,但適當(dāng)引導(dǎo)學(xué)生進(jìn)行

抽象的思維活動(dòng)還是可行的.例如,向?qū)W生提問:在數(shù)軸上對(duì)應(yīng)一億萬分之一的點(diǎn),你能畫出來嗎?它是

不是存在等.

第十七課時(shí)

一、課題§2.2數(shù)軸(2)

二、教學(xué)目標(biāo)

1.使學(xué)生進(jìn)一步駕駛數(shù)軸概念;

2.使學(xué)生會(huì)利用數(shù)軸比較有理數(shù)的大?。?/p>

3.使學(xué)牛.進(jìn)一步理解數(shù)形結(jié)合的思想方法.

三、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):會(huì)比較有理數(shù)的大小.

難點(diǎn):如何比較兩個(gè)負(fù)數(shù)(尤其是兩個(gè)負(fù)分?jǐn)?shù))的大小.

四、教學(xué)手段

現(xiàn)代課堂教學(xué)手段

五、教學(xué)方法

啟發(fā)式教學(xué)

六、教學(xué)過程

(一)、從學(xué)生原有的相識(shí)結(jié)構(gòu)提出問題

1.數(shù)軸怎么畫?它包括哪幾個(gè)要素?

2.大于0的數(shù)在數(shù)軸上位于原點(diǎn)的哪一側(cè)?小于。的數(shù)呢?

(二)、師生共同探究利用數(shù)軸比較有理數(shù)大小的法則

在溫度計(jì)上顯示的兩個(gè)溫度,上邊的溫度總比下邊的溫度高.例如,在上邊.JVC高于-2℃:

-1℃在-4℃上邊,7c高于-4℃.

下面的結(jié)論引導(dǎo)學(xué)生把溫度計(jì)與數(shù)軸類比,自己歸納出來:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左

邊的數(shù)大.

(三)、運(yùn)用舉例變式練習(xí)

通過此例引導(dǎo)學(xué)生總結(jié)出“正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于一切負(fù)數(shù)”的規(guī)律.要提示學(xué)生,

用“V”連接兩個(gè)以上數(shù)時(shí),小數(shù)在前,大數(shù)在后,不能出現(xiàn)5>0V4這樣的式子.

例2視察數(shù)軸,找出符合下列要求的數(shù):

(1)最大的正整數(shù)和最小的正整數(shù);

(2)最大的負(fù)整數(shù)和最小的負(fù)整數(shù);

(3)最大的整數(shù)和最小的瞥數(shù);

(4)最小的正分?jǐn)?shù)和最大的負(fù)分?jǐn)?shù).

在解本題時(shí)應(yīng)適時(shí)提示學(xué)生,直線是向兩邊無限延長(zhǎng)的.

課堂練習(xí)

2.在數(shù)軸上畫出表示下列各數(shù)的點(diǎn),并用把它們連接起來:

(四)、小結(jié)

老師指出這節(jié)課主要內(nèi)容是利用數(shù)軸比較兩個(gè)有理數(shù)的大小,進(jìn)而要求學(xué)生敘述比較的法則.

七、練習(xí)設(shè)計(jì)

1.比較下列每對(duì)數(shù)的大?。?/p>

2.把下列各組數(shù)從小到天用“V”號(hào)連接起來:

(1)3,-5,-4;(2)-9,16,-11;

3.下表是我國(guó)幾個(gè)城市英年一月份的平均氣溫,把它們按從高到低的依次排列.

八、板書設(shè)計(jì)

2.2數(shù)軸(2)

(一)學(xué)問回顧(三)例題解析(五)課堂小結(jié)

例3、例4

(二)視察發(fā)覺(四)課堂練習(xí)練習(xí)設(shè)計(jì)

九、教學(xué)后記

從學(xué)生已有學(xué)問、閱歷動(dòng)身探討新問題,是我們組織教學(xué)的一個(gè)重要原則.小學(xué)里和學(xué)過利用射線上

的點(diǎn)來表示數(shù),為此我們可引導(dǎo)學(xué)生思索:把射線怎樣做些改進(jìn)就可以用來表示有理數(shù)?伴以溫度計(jì)為模

型,引出數(shù)軸的概念.教學(xué)中,數(shù)軸的三要素中的每一要素都要細(xì)致分析它的作用,使學(xué)生從直觀相識(shí)上

升到理性相識(shí).宜線、數(shù)軸都是特別抽象的數(shù)學(xué)概念,當(dāng)然對(duì)初學(xué)者不宜講的過多,但適當(dāng)引導(dǎo)學(xué)生進(jìn)行

抽象的思維活動(dòng)還是可行的.例如,向?qū)W生提問:在數(shù)軸上對(duì)應(yīng)一億萬分之一的點(diǎn),你能畫出來嗎?它是

不是存在等.

第十八課時(shí)

一、課題§2.3肯定值(1)

二、教學(xué)目標(biāo)

1、使學(xué)牛.駕馭有理數(shù)的肯定值概念及表示方法;

2、使學(xué)生嫻熟駕馭有理數(shù)肯定值的求法和有關(guān)的簡(jiǎn)潔計(jì)算:

3、在肯定位概念形成過程中,滲透數(shù)形結(jié)合等思想方法,并留意培育學(xué)生的概括實(shí)力

三、教學(xué)重點(diǎn)和難點(diǎn)

正確理解肯定值的概念

四、教學(xué)手段

E見代課堂教學(xué)手段

五、教學(xué)方法

啟發(fā)式教學(xué)

六、教學(xué)過程

(一)、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

1、下列各數(shù)中:

121

+7,-2,-83,0,+001,-一,1一,哪些是正數(shù)?哪些是負(fù)數(shù)?哪些是非負(fù)數(shù)?

352

2、什么叫做數(shù)軸?畫一條數(shù)軸,并在數(shù)軸上標(biāo)出下列各數(shù):

3

-3,4>0,3,~15?-4>一,2

2

3、問題2中有哪些數(shù)互為相反數(shù)?從數(shù)軸上看,互為相反數(shù)的一對(duì)有理數(shù)有什么特點(diǎn)?

4、怎樣表示一個(gè)數(shù)的相反數(shù)?

(二)、師生共同探討形成肯定值概念

例1兩輛汽車,第一輛沿馬路向東行駛了5千米,其次輛向西行駛了4千米,為了表示行駛的方向

(規(guī)定向東為正)和所在位置,分別記作+5千米和-4千米這樣,利用有理數(shù)就可以明確表示每輛汽車在馬

路上的位置了

我們知道.出租汽車是計(jì)程收費(fèi)的,這時(shí)我們只須要考慮汽車行駛的距離.不須要考慮方向當(dāng)不考

慮方向時(shí),兩輛汽車行駛的距離就可以記為5千米和4千米(在圖上標(biāo)出距離)這里的5叫做+5的肯定值,

4叫做-4的肯定值

例2兩位徒工分別用卷尺測(cè)量一段1米長(zhǎng)的鋼管,由于測(cè)量工具運(yùn)用不當(dāng)或讀數(shù)不精確,甲測(cè)得的

結(jié)果是101米,乙側(cè)得的結(jié)果是098米甲測(cè)量的差額即多出的數(shù)記作+001米,乙測(cè)量的差額

即削減的數(shù)記作-002米

假如不計(jì)測(cè)量結(jié)果是多出或削減,只考慮測(cè)量誤差,那么他們測(cè)量的誤差分別是001和002

這里所說的測(cè)量誤差也就是測(cè)量結(jié)果所多出來或削減/的數(shù)+001和-002和7-002的肯定值

假如請(qǐng)有閱歷的老師傅進(jìn)行測(cè)量,結(jié)果恰好是1米,我們用有理數(shù)來表示測(cè)量的誤差,這個(gè)數(shù)就是0(也

可以記作或0),自然這個(gè)差額0的絕以值是0

現(xiàn)在我們撇開例題的實(shí)際意義來探討有理數(shù)的肯定值,那么,有

+5的肯定值是5,在數(shù)軸上表示+5的點(diǎn)到原點(diǎn)的距離是5;

-4的肯定值是4,在數(shù)軸上表示-4的點(diǎn)到原點(diǎn)的距離是4:

+001的肯定值是001,在數(shù)軸上表示+001的點(diǎn)到原點(diǎn)的距離是001:

-002的肯定值是002,在數(shù)軸上表示-002的點(diǎn)它到原點(diǎn)的距離是002:

。的肯定值是0,表明它到原點(diǎn)的距離是0

一般地,一個(gè)數(shù)a的肯定值就是數(shù)軸上表示a的點(diǎn)到原點(diǎn)的距離

為了便利,我們用一種符號(hào)來表示一個(gè)數(shù)的肯定值約定在一個(gè)數(shù)的兩旁各畫一條豎線來表示這個(gè)數(shù)

的肯定值如

+5的肯定值記作+5,明顯有+5=5:

-002的肯定值記作-002,明顯有-002=002;

0的肯定值記作0,也就是0=0

a的肯定值記作a,(提示學(xué)生a可以是正數(shù),也可以是負(fù)數(shù)或0)

例3利用數(shù)軸求5,32,7,-2,-71,-05的肯定值

由例3學(xué)生自己歸納出:

一個(gè)正數(shù)的肯定值是它本身:

一個(gè)負(fù)數(shù)的肯定值是它的相反數(shù);

0的肯定也是0

這也是肯定值的代數(shù)定義把肯定值的代數(shù)定義用數(shù)學(xué)符號(hào)語言如何表達(dá)?

把文字?jǐn)⑹稣Z言變換成數(shù)學(xué)符號(hào)語言,這是一個(gè)比較困難的問題,老師應(yīng)幫助學(xué)生完成這一步

1、用a表示一個(gè)數(shù),如何表示a是正數(shù),a是負(fù)數(shù),a是0?

由有理數(shù)大小比較可以知道:

a是正數(shù):a>0;a是負(fù)數(shù):a<0;a是0:a=0

2、怎樣表示a的本身,a的相反數(shù)?

a的本身是自然數(shù)還是a.a的相反數(shù)為-a.

現(xiàn)在可以把肯定值的代數(shù)定義表示成

假如a>0,那么|,=a:假如aVO,那么卜-a;假如a=O,那么時(shí)=0

由肯定值的代數(shù)定義,我們可以很便利地求已知數(shù)的肯定值了

例4求8,-8,0,6,-n,n-5的肯定值

44

(三)、課堂練習(xí)

1、下列哪些數(shù)是正數(shù)?

4—.|—3|?|o|.-|+2|,-(-2),-|-2|

3

2、在括號(hào)里填寫適當(dāng)?shù)臄?shù):

|-3.5|=():+;=():-|-5|=():-|+3|=():|()=o:

T(卜2

3、計(jì)算下列各題:

|-31+1+51:|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;1—IX|—|;|—|+1-21;—F—。

23222

(四)、小結(jié)

指導(dǎo)學(xué)生閱讀教材,進(jìn)一步理解肯定值的代數(shù)和幾何意義

七、練習(xí)設(shè)計(jì)

1、填空:

(1)+3的符號(hào)是____,肯定值是_____;

(2)-3的符號(hào)是,肯定值是:

(3)-'的符號(hào)是一,肯定值是_____;

2

(4)10-5的符號(hào)是,肯定值是

2、填空:

(1)符號(hào)是+號(hào),肯定值是7的數(shù)是:

(2)符號(hào)是-號(hào),肯定值是7的數(shù)是_______;

(3)符號(hào)是-號(hào),肯定值是035的數(shù)是_______;

(4)符號(hào)是+號(hào),肯定值是1,的數(shù)是_______;

3

3、(1)肯定值是上的數(shù)有幾個(gè)?各是什么?

4

(2)肯定值是0的數(shù)有幾人?各是什么?

(3)有沒有肯定值是-2的數(shù)?

4、計(jì)算:

(1)|-15|-|-6|:(2)|-024|+|-506|:⑶-3|x|-2|:

(4)|+4|X|-5|;(3)|-124-+2;(6)|204----|

2

5、填空:

(1)當(dāng)a>0時(shí),12al=:

(2)當(dāng)a>l時(shí),|a-l|=

⑶當(dāng)aVl時(shí),|aT|=

八、板書設(shè)計(jì)

2.3肯定值(1)

(一)學(xué)問回顧(三)例題解析(五)課堂小結(jié)

例1、例2

<-)視察發(fā)覺(四)課堂練習(xí)練習(xí)設(shè)計(jì)

九、教學(xué)后記

1、關(guān)于概念結(jié)構(gòu)的理論,羅希提出的原型說(1975年)認(rèn)為,概念主要以原型即它的最佳關(guān)例表達(dá)出

來?個(gè)數(shù)的肯定值實(shí)質(zhì)上是該數(shù)所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離的數(shù)值因此,我們選用了例1,它對(duì)于理解

和形成肯定值概念是有益的布爾納提出了特征表說(1979年),他主見從個(gè)體所具有的共同重要特征來說

明概念,所以,這里協(xié)作例1選用了例2,意圖是突出它們的共同特征,增加學(xué)生對(duì)肯定值概念的感性相

識(shí),同時(shí)還能對(duì)零的肯定值給出一個(gè)比較自然的說明

2、中學(xué)代數(shù)里,實(shí)數(shù)肯定值的形式定義是:aGR,

a,a>0;

|a|=<

—a,aY0.

而利用數(shù)軸將表示a的點(diǎn)到原點(diǎn)的距離作為它的一種幾何說明事實(shí)上,它的幾何意義反映了概念的

本質(zhì),也可以作為肯定值的定義即實(shí)質(zhì)定義一股在同一學(xué)問系統(tǒng)中不宜出現(xiàn)同一對(duì)象的兩種不同定義,

為了避開證明等價(jià)性的麻煩,通常以形式化的表述作為定義,另一種表術(shù)作為協(xié)助性的說明,這在邏輯上

可帶來便利,其不足之處是形式定義較難理解

我們采納的方法是重點(diǎn)放在幾何意義的理解上,最終再概括上升到形式定義上來這樣比較符合從感

性相識(shí)上升到理性相識(shí)的規(guī)律,同時(shí)使得肯定位概念的非負(fù)性具有較扎實(shí)的基礎(chǔ)

第十九課時(shí)

課題§2.3肯定值(2)

二、教學(xué)目標(biāo)

1、使學(xué)生進(jìn)一步駕馭肯定值概念:

2、使學(xué)生駕馭利用肯定仇比較兩個(gè)負(fù)數(shù)的大小;

3、留意培育學(xué)生的推時(shí)論證實(shí)力

三、教學(xué)重點(diǎn)和難點(diǎn)

負(fù)數(shù)大小比較

四、教學(xué)手段

現(xiàn)代課堂教學(xué)手段

五、教學(xué)方法

后發(fā)式教學(xué)

六、教學(xué)過程

(一)、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題

1、計(jì)算:1+15|;|—|;)01

3

2、計(jì)算:

2323

3、比較-(-5)和T-5,+(-5)和+1-51的大小

4、哪個(gè)數(shù)的肯定值等于0?等于一?等于-1?

3

肯定值小于3的數(shù)有哪些?肯定值小于3的整數(shù)有哪幾個(gè)?

6、a,b所表示的數(shù)如圖所示,求|a|,|b|,|a+b|,|b-a|

7、若|a|+|bT|=0,求a,b

這?組題從不同角度提出問題,以使學(xué)生進(jìn)?步駕馭肯定值概念

解:1、|+151=15,I—|=—

33

讓學(xué)生口答這樣做的依據(jù)

11111111

2、|=|—=—,-------=-(-------)。

23662323

說明:“II”右.兩重作用,即肯定值和括號(hào)

3、因?yàn)?(-5)=5,-|-5|=-5,5>-5,

所以-(-5)>+5]。

這里需講清一個(gè)問題,即-(-5)和-151的讀法,讓學(xué)生熟識(shí),-(-5)讀作-5的相反數(shù),-15|讀作-5肯

定值的相反數(shù)

因?yàn)?(5)=5,115|=,5<5,

所以+(-5)<+|~5|

4、0的肯定值等于0,土工的肯定值等于‘,沒有什么數(shù)的肯定值等于T(為什么?)用符號(hào)語言表

33

這里應(yīng)再次強(qiáng)調(diào)肯定值是數(shù)軸上的點(diǎn)與原點(diǎn)的距離,并指出距離是非負(fù)量

5、肯定值小于3的數(shù)是從-3到3中間的全部的有理數(shù),有多數(shù)多個(gè);但肯定值小于3的整數(shù)只有

五個(gè):-2,-1,0,1,2

用符號(hào)語言表示應(yīng)為:

因?yàn)閨x|V3,所以-3Vx<3

假如x是整數(shù),那么x=-2,-1,0,1,2

6、由數(shù)軸上a、b的位置可以知道a<0,b>0,且|a|V|:)|

所以|a|=-a,|b|=b,

|a+b|=a+b,|b-a|=b-a

7、若a+b=0,則a,b互為相反數(shù)或a,b都是0,因?yàn)榭隙ㄖ捣秦?fù),所以只有|a=0,|bT=0,由

肯定值意義得a=0,b-l=0

用符號(hào)語言表示應(yīng)為:

因?yàn)閨a|+|b-l|=O,所以a=0,b-l=0,

所以a=0,b=l

(二)、師生共同探究利用肯定值比較負(fù)數(shù)大小的法則

利用數(shù)軸我們已經(jīng)會(huì)比較有理數(shù)的大小

由上面數(shù)軸,我們可以知道cVbVa,其中b,c都是負(fù)數(shù),它們的肯定值哪個(gè)大?明顯上|>網(wǎng)引導(dǎo)學(xué)

生得出結(jié)論:

兩個(gè)負(fù)數(shù),肯定值大的反而小

這樣以后在比較負(fù)數(shù)大小時(shí)就不必每次再畫數(shù)軸了

(三)、運(yùn)用舉例變式練習(xí)

例1比較-41與-1-3的大小

2

例2已知a>b>0,比較a,-a,b,-b的大小

23

例3比較--與一一的大小

34

課堂練習(xí)

1、比較下列每對(duì)數(shù)的大?。?/p>

2與I

3

2、比較下列每對(duì)數(shù)的天?。?/p>

7,3I,11,11,2

----與-----;—與—;—與-----:—與—

10102352023

(四)、小結(jié)

先由學(xué)生敘述比較有理數(shù)大小的兩種方法一一利用數(shù)軸比較大??;利用肯定值比較大小,然后老師引

導(dǎo)學(xué)生得出:比較兩個(gè)有理數(shù)的大小,事實(shí)上是由符號(hào)與肯定值兩方面來確定學(xué)習(xí)了肯定值以后,就可

以不必利用數(shù)軸來比較兩個(gè)有理數(shù)的大小了

七、練習(xí)設(shè)計(jì)

1、推斷下列各式是否正確:

I23⑷『一I

(1)1-01|<|-001|;(2)1--|<⑶—<

34347

2、比較下列每對(duì)數(shù)的人小:

53334.

(1)—與—;(2)---與-0273;⑶一二■與一二

881179

5.1()一2.37.9

(4)-一與----;(5)--與—:(6)一-與-----

61135911

3、寫出肯定值大于3而小于8的全部整數(shù)

4、你能說出符合卜列條件的字母表示什么數(shù)嗎?

\x\

(1)|a|=a:(2)|a|=-a:(3)——=-1;(4)a>-a:

X

(5)|a|2a:(6)-y>0;(7)-a<0;(8)a+b=0

5若la+1|+|b-a|=0,求a,b

八、板書設(shè)計(jì)

2.3肯定值(2)

(-)學(xué)問回顧(三)例題解析(五)課堂小結(jié)

例1、例2

(二)視察發(fā)覺(四)課堂練習(xí)練習(xí)設(shè)計(jì)

九、教學(xué)后記

在傳授學(xué)問的同時(shí),肯定要重視學(xué)科基本思想方法的教學(xué)大于這一點(diǎn),布魯納有過精彩的論述他

指出,駕馭數(shù)學(xué)思想和方法可以使數(shù)學(xué)更簡(jiǎn)潔理解和更簡(jiǎn)潔記憶,更重要的是領(lǐng)悟數(shù)學(xué)思想和方法是通向

遷移大道的“光明之路”,假如把數(shù)學(xué)思想和方法學(xué)好r,在數(shù)學(xué)思想和方法的指導(dǎo)下運(yùn)用數(shù)學(xué)方法駕馭

數(shù)學(xué)學(xué)問,就能培育學(xué)生的數(shù)學(xué)實(shí)力不但使數(shù)學(xué)學(xué)習(xí)變得簡(jiǎn)潔,而且會(huì)使得別的學(xué)科簡(jiǎn)潔學(xué)習(xí)明顯,

依據(jù)布魯納的觀點(diǎn),數(shù)學(xué)教學(xué)就不能就學(xué)問論學(xué)問,而是要使學(xué)生駕馭數(shù)學(xué)最根本的東西,用數(shù)學(xué)思想和

方法統(tǒng)攝詳細(xì)學(xué)問,詳細(xì)解決問題的方法,逐步形成和發(fā)展數(shù)學(xué)實(shí)力

為了使學(xué)生駕馭必要的數(shù)學(xué)思想和方法,須要在教學(xué)中結(jié)合內(nèi)容逐步滲透,而不能脫離內(nèi)褥形式地傳

授本課中,我們有意識(shí)地突出“分類探討”這一數(shù)學(xué)思想方法,以期使學(xué)生對(duì)此有一個(gè)初步的相識(shí)與了

其次十課時(shí)

一、課題§2.4有理數(shù)的加法(I)

二、教學(xué)目標(biāo)

1.使學(xué)生駕馭有理數(shù)加法法則,并能運(yùn)用法則進(jìn)行計(jì)算;

2.在有理數(shù)加法法則的教學(xué)過程中,留意培育學(xué)生的視察、比較、歸納及運(yùn)算實(shí)力.

三、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):有理數(shù)加法法則.

難點(diǎn):異號(hào)兩數(shù)相加的法則.

四、教學(xué)手段

現(xiàn)代課堂教學(xué)手段

五、教學(xué)方法

啟發(fā)式教學(xué)

六、教學(xué)過程

(一)、師生共同探討有理數(shù)加法法則

前面我們學(xué)習(xí)了有關(guān)有理數(shù)的一些基礎(chǔ)學(xué)問,從今日起起先學(xué)習(xí)有理數(shù)的運(yùn)算.這節(jié)課我們來探討兩

個(gè)有理數(shù)的加法.

兩個(gè)有理數(shù)相加,有多少種不同的情形?

為此,我們來看一個(gè)大家熟識(shí)的實(shí)際問題:

足球競(jìng)賽中贏球個(gè)數(shù)與輸球個(gè)數(shù)是相反意義的量.若我們規(guī)定贏球?yàn)椤罢?,輸球?yàn)椤柏?fù)”.匕如,

贏3球記為+3,輸2球記為-2.學(xué)校足球隊(duì)在一場(chǎng)競(jìng)賽中的輸嬴可能有以下各種不同的情形:

(1)上半場(chǎng)屆了3球,下半場(chǎng)贏了2球,那么全場(chǎng)共贏了5球.也就是

(+3)+(+2)=+5.

(2)上半場(chǎng)輸了2球,下半場(chǎng)輸了1球,那么全場(chǎng)共輸了3球.也就是

(-2)+(-1)=-3.

現(xiàn)在,清同學(xué)們說出其他可能的情形.

答:上半場(chǎng)贏了3球,下半場(chǎng)輸r2球,全場(chǎng)贏r1球,也就是

(+3)+(-2)=+1;

上半場(chǎng)輸了3球,下半場(chǎng)嬴了2球,全場(chǎng)輸了1球,也就是

(-3)+(+2)=-1:

上半場(chǎng)扁了3球下半場(chǎng)不輸不贏,全場(chǎng)仍痛3球,也就是

(+3)+0=+3:

上半場(chǎng)輸「2球,下半場(chǎng)兩隊(duì)都沒有進(jìn)球,全場(chǎng)仍輸2球,也就是

(-2)+0=-2:

上半場(chǎng)打平,下半場(chǎng)也打平,全場(chǎng)仍是平局,也就是

0+0=0.

上面我們列出了兩個(gè)有理數(shù)相加的7種不憐憫形,并依據(jù)它們的詳細(xì)意義得出了它們相加的和.但是,

要計(jì)算兩個(gè)有理數(shù)相加所得的和,我們總不能始終用這種方法.現(xiàn)在我們大家細(xì)致視察比較這7個(gè)算式,

看能不能從這些算式中得到啟發(fā).想方法歸納出進(jìn)行有理數(shù)加法的法則?也就是結(jié)果的符號(hào)怎么定?肯定

值怎么算?

這里,先讓學(xué)生思索2?3分鐘,再由學(xué)生自己歸納出有理數(shù)加法法則:

1.同號(hào)兩數(shù)相加,取相同的符號(hào),并把肯定值相加:

2.肯定值不相等的異號(hào)兩數(shù)相加,取肯定值較大的加數(shù)符號(hào),并用較大的肯定值減去較小的肯定值,

互為相反數(shù)的兩個(gè)數(shù)相加得0:

3.一個(gè)數(shù)同0相加,仍得這個(gè)數(shù).

(二)、應(yīng)用舉例變式練習(xí)

例1計(jì)算下列算式的結(jié)果,并說明理由:

(l)('4)?(i7);(2)(4)?(7);⑶(⑷M7);(4)。9)M4);

(5)(+4)+(-4);(6)(+9)+(-2);(7)(-9)+(+2):(8)(-9)+0:

(9)0+(+2):(10)0+0.

學(xué)生逐題口答后,老師小結(jié):

進(jìn)行有理數(shù)加法,先要推斷兩個(gè)加數(shù)是同號(hào)還是異號(hào),有一個(gè)加數(shù)是否為零;再依據(jù)兩個(gè)加數(shù)符號(hào)的

詳細(xì)狀況,選用某一條加法法則.進(jìn)行計(jì)算時(shí),通常應(yīng)當(dāng)先確定“和”的符號(hào),再計(jì)算“和”的肯定值.

解:(1)(-3)+(-9)(兩個(gè)加數(shù)同號(hào),用加法法則的第2條計(jì)算)

=-(3+9)(和取負(fù)號(hào),把肯定值相加)

=-12.

下面請(qǐng)同學(xué)們計(jì)算下列各題:

(1)(-0.9)+(+1.5):(2)(+2.7)+(-3):(3)(-1.1)+(-2.9):

全班學(xué)生書面練習(xí),四位學(xué)生板演,老師對(duì)學(xué)生板演進(jìn)行講評(píng).

(三)、小結(jié)

這節(jié)課我們從實(shí)例動(dòng)身,經(jīng)過比較、歸納,得出了有理數(shù)加法的法則.今后我們常常要用類似的思想

方法探討其他問題.

應(yīng)用有理數(shù)加法法則進(jìn)行計(jì)算時(shí).,要同時(shí)留意確定“和”的符號(hào),計(jì)算“和”的肯定值兩件事.

七、練習(xí)設(shè)計(jì)

1.計(jì)算:

(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);

(5)67+(-73);(6)(-84)+(-59);(7)33+48;(8)(-56)

+37.

2.計(jì)算:

(1)(-0.9)+(-2.7);(2)3.8+(-8.4):⑶

(-0.5)+3;

(4)3.29+1.78:(5)7+(-3.04):

(6)(-2.9)+(-0.31);

(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)

+0.

4*.用“〉”或"V"號(hào)填空:

(1)假如a>0,b>0,那么a+b0:

(2)假如aVO,b<0,那么a+b_____0;

(3)假如a>0,b<0,|a>|b,那么a+b_____0:

(4)假如aVO,b>0,la>|b?那么a+b0.

5*.分別依據(jù)下列條件,利用|a|與|b|表示a與b的和:

(l)a>0,b>0;(2)a<0,b<0;

(3)a>0.b<0,|a|>|b|:(4)a>0.b<0,|a|<|b|.

八、板書設(shè)計(jì)

2.4有理數(shù)的加法(1)

(-)學(xué)問回顧(三)例題解析(五)課堂小結(jié)

例1、例2

(二)視察發(fā)覺(四)課堂練習(xí)練習(xí)設(shè)計(jì)

九、教學(xué)后記

“有理數(shù)加法法則”的教學(xué),可以有多種不同的設(shè)計(jì)方案.大體上可以分為兩類:一類是較快地由老

師給出法則,用較多的時(shí)間(30分鐘以上)組織學(xué)生練習(xí),以求嫻熟地駕馭法則:另一類是適當(dāng)加強(qiáng)法則的

形成過程,從而在此過程中著力培育學(xué)生的視察、比較、歸納實(shí)力,相應(yīng)地適當(dāng)壓縮應(yīng)用法則的練習(xí),如

本教學(xué)設(shè)計(jì).

現(xiàn)在,試比較這兩類教學(xué)設(shè)計(jì)的得失利弊.

第一種方案,教學(xué)的重點(diǎn)偏重于讓學(xué)生通過練習(xí),熟識(shí)法則的應(yīng)用,這種教法近期效果較好.

其次種方案,留意引導(dǎo)學(xué)生參加探究、歸納有理數(shù)加法法則的過程,主動(dòng)獲得學(xué)問.這樣,學(xué)生在這

節(jié)課上不僅學(xué)懂了法則,而且能感知到探討數(shù)學(xué)問題的一些基本方法.

這種方案削減r應(yīng)用法則進(jìn)行計(jì)算的練習(xí),所以學(xué)生駕馭法則的嫻熟程度可能稍差,這是教學(xué)中應(yīng)當(dāng)

留意的問題.但是,在后續(xù)的教學(xué)中學(xué)生將千萬次應(yīng)用“有理數(shù)加法法則”進(jìn)行計(jì)算,故這種缺陷是可以

得到彌補(bǔ)的.第一種方案減弱了得出結(jié)論的''過程",失去了培育學(xué)生視察、比較、歸納實(shí)力的一次機(jī)會(huì).權(quán)

衡利弊,我們主見采納其次種教學(xué)方

其次十一課時(shí)

一、課題§2.4有理數(shù)的加法(2)

二、教學(xué)目標(biāo)

1.使學(xué)生駕馭有理數(shù)加法的運(yùn)算律,并能運(yùn)用加法運(yùn)算律簡(jiǎn)化運(yùn)算:

2.培育學(xué)生視察、比較、歸納及運(yùn)算實(shí)力.

三、教學(xué)重點(diǎn)和難點(diǎn)

1.重點(diǎn):有理數(shù)加法運(yùn)算律.

2.難點(diǎn):敏捷運(yùn)用運(yùn)算律使運(yùn)算簡(jiǎn)便.

四、教學(xué)手段

現(xiàn)代課堂教學(xué)手段

五、教學(xué)方法

啟發(fā)式教學(xué)

六、教學(xué)過程

(一)、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題

1.敘述有理數(shù)的加法法則.

2.“有理數(shù)加法”與小學(xué)里學(xué)過的數(shù)的加法有什么區(qū)分和聯(lián)系?

答:進(jìn)行有理數(shù)加法運(yùn)算,先要依據(jù)詳細(xì)狀況正確地選用法則,確定和的符號(hào),這與小學(xué)里學(xué)過的數(shù)

的加法是不同的:而計(jì)算“和”的肯定值,用的是小學(xué)里學(xué)過的加法或減法運(yùn)算.

3.計(jì)算下列各題,并說明是依據(jù)哪一條運(yùn)算法則?

(1)(-9.18)+6.18:(2)6.18+(-9.18);(3)(-2.37)+(-4

.63):

4.計(jì)算下列各題:

(1)[8+(-5)]+(-4)?(2)8+[(-5)+(-4)];(3)[(-7)+(-10)]+(-11);

(4)(-7)+[(-10)+(-11)]:(5)[(-22)+(-27)]+(+27):

(6)(-22)+[(-27)+(+27)].

(二)、師生共同探討形成有理數(shù)運(yùn)算律

通過上面練習(xí),引導(dǎo)學(xué)生得出:

交換律一一兩個(gè)有理數(shù)相加,交換加數(shù)的位置,和不變.

用代數(shù)式表示上面一段話:

a+b=b+a.

運(yùn)算律式子中的字母a,b表示隨意的一個(gè)有理數(shù),可以是正數(shù),也可以是負(fù)數(shù)或者等.在同一個(gè)式子

中,同一個(gè)字母表示同一個(gè)數(shù).

結(jié)合律二個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩?卜數(shù)和加,和不變.

用代數(shù)式表示上面一段話:

(a+b)+c=a+(b+c).

這里a,b,c表示隨意三個(gè)有理數(shù).

(三)、運(yùn)用舉例變式練習(xí)

依據(jù)加法交換律和結(jié)合律可以推出:三個(gè)以上的有理數(shù)相加,可以隨意交換加數(shù)的位置,也可以先把

其中的幾個(gè)數(shù)相加.

例1計(jì)算16+(-25)+24+(-32).

引導(dǎo)學(xué)生發(fā)覺,在本例中,把正數(shù)與負(fù)數(shù)分別結(jié)合在一起再相加,計(jì)算就比較簡(jiǎn)便.

解:16+625)+24+(-32)

=16+24+(-25)+(-32)(加法交換律)

=[16+24]+[(-25)+(-32)](加法結(jié)合律)

=40H-57)(同號(hào)相加法則1

=-17.(異號(hào)和加法

則)

本例先由學(xué)生在筆記本上解答,然后老師依據(jù)學(xué)生解答狀況有定幾名學(xué)生板演,并引導(dǎo)學(xué)生發(fā)覺,簡(jiǎn)

化加法運(yùn)算一般是三種方法:首先消去互為相反數(shù)的兩數(shù)(其和為0),同號(hào)結(jié)合或湊整數(shù).

例2、10袋小麥稱重記錄如圖所示,以每袋90千克為準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作

負(fù)數(shù).

總計(jì)是超過多少千克或不足多少千克?10袋小麥的總重量是多少?

老師通過啟發(fā),由學(xué)生列出算式,再讓學(xué)生思索,如何應(yīng)用運(yùn)算律,使計(jì)算簡(jiǎn)便.

解:7+5+(-4)+6+4+3+(-3)+(-2)+8+1

=[(-4)+4]+[5+(-3)+(-2)]+(7+6+3+8+1)

=0+0+25=25.

90X10+25=925.

答:總計(jì)是超過25千克,總重量是925千克.

課堂練習(xí)

1.計(jì)算:(要求注理由)

(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4);

(3)(-7)+(-6.5)+(-3)+6.5.

2.計(jì)算:(要求注理由)

七、練習(xí)設(shè)計(jì)

1.計(jì)算:(要求注理由)

(1)(-8)+10+2+(-D;(2)5+(-6)+3+9+(-4)+(-7);

(3)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;

2.計(jì)算(要求注理由)

(1)(-17)+59+(-37);(2)(-18.

65)+(-6.15)+18.15+6.15:

3.當(dāng)a=Tl,b=8,c=-14時(shí),求下列代數(shù)式的值:

(l)a+b;(2)a+c;

(3)a+a+a:(4)a+b+c.

利用有理數(shù)的加法解F列各題(第4?8題):

4.飛機(jī)的飛行高度是1000米,上升300米,又下降500米,這時(shí)飛行高度是多少?

5.存折中有450元,取呂80元,又存入150元以后,存折中還有多少錢?

6.一天早晨的氣溫是7C,中T上升了11℃,半夜又下降了9℃,半夜的氣溫是多少?

7.小吃店一周中每天的盈虧狀況如下(盈余為正):

128.3元,-25.6元,-15元,27元,-7元,36.5元,98元

一周總的盈虧狀況如何?

8.8筐白菜,以每筐25千克為準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),稱重的記錄如

下:

1.5,-3,2,-0.5,1,-2,-2,-2.5

8筐白菜的重量是多少?

八、板書設(shè)計(jì)

2.42埋數(shù)的加法⑵

(一)學(xué)問回顧(三)例題解析(五)課堂小結(jié)

例1、例2

<-)視察發(fā)覺(四)課堂練習(xí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論