版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線(xiàn)…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)吉林科技職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)分析與內(nèi)存計(jì)算》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)集成用于將多個(gè)數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要集成來(lái)自不同數(shù)據(jù)庫(kù)的銷(xiāo)售數(shù)據(jù)和客戶(hù)數(shù)據(jù),以下關(guān)于數(shù)據(jù)集成的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.需要解決數(shù)據(jù)格式不一致、字段命名差異等問(wèn)題B.可以使用ETL(Extract,Transform,Load)工具來(lái)實(shí)現(xiàn)數(shù)據(jù)的抽取、轉(zhuǎn)換和加載C.數(shù)據(jù)集成過(guò)程中可能會(huì)引入重復(fù)數(shù)據(jù)和數(shù)據(jù)沖突,需要進(jìn)行處理D.數(shù)據(jù)集成可以隨意進(jìn)行,不需要考慮數(shù)據(jù)的質(zhì)量和一致性2、在時(shí)間序列數(shù)據(jù)分析中,預(yù)測(cè)未來(lái)值是常見(jiàn)的任務(wù)。假設(shè)我們有一組月度銷(xiāo)售數(shù)據(jù),以下關(guān)于時(shí)間序列預(yù)測(cè)方法的描述,正確的是:()A.簡(jiǎn)單線(xiàn)性回歸可以準(zhǔn)確預(yù)測(cè)時(shí)間序列數(shù)據(jù)的未來(lái)值B.ARIMA模型適用于具有明顯季節(jié)性和趨勢(shì)性的時(shí)間序列C.不考慮數(shù)據(jù)的平穩(wěn)性,直接應(yīng)用預(yù)測(cè)模型D.預(yù)測(cè)的時(shí)間跨度越長(zhǎng),預(yù)測(cè)結(jié)果的準(zhǔn)確性就越高3、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),特征工程是重要的環(huán)節(jié)。以下關(guān)于特征工程的描述,錯(cuò)誤的是:()A.特征縮放可以加快模型的訓(xùn)練速度B.特征選擇可以去除無(wú)關(guān)或冗余的特征C.特征構(gòu)建是從原始數(shù)據(jù)中創(chuàng)造新的特征D.特征工程對(duì)模型的性能沒(méi)有影響4、在數(shù)據(jù)分析中,若要比較多個(gè)總體的均值是否相等,以下哪種方法較為常用?()A.方差分析B.多重比較C.假設(shè)檢驗(yàn)D.以上都是5、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)來(lái)描述數(shù)據(jù)特征是很重要的。假設(shè)我們有一組學(xué)生的考試成績(jī)數(shù)據(jù),想要了解成績(jī)的分布情況,以下哪個(gè)統(tǒng)計(jì)指標(biāo)能最有效地反映數(shù)據(jù)的離散程度?()A.均值B.中位數(shù)C.標(biāo)準(zhǔn)差D.眾數(shù)6、在進(jìn)行數(shù)據(jù)清洗時(shí),發(fā)現(xiàn)數(shù)據(jù)存在重復(fù)記錄。以下哪種方法可以有效地去除重復(fù)記錄?()A.手動(dòng)篩選B.使用數(shù)據(jù)庫(kù)的去重功能C.隨機(jī)刪除一部分重復(fù)記錄D.對(duì)重復(fù)記錄進(jìn)行合并7、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的挑戰(zhàn)有很多,其中數(shù)據(jù)質(zhì)量問(wèn)題是一個(gè)重要的挑戰(zhàn)。以下關(guān)于數(shù)據(jù)質(zhì)量問(wèn)題的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量問(wèn)題可能會(huì)導(dǎo)致數(shù)據(jù)挖掘結(jié)果的錯(cuò)誤和不可靠B.數(shù)據(jù)質(zhì)量問(wèn)題可以通過(guò)數(shù)據(jù)清洗和驗(yàn)證等方法來(lái)解決C.數(shù)據(jù)質(zhì)量問(wèn)題只與數(shù)據(jù)的來(lái)源有關(guān),與數(shù)據(jù)挖掘的算法和技術(shù)無(wú)關(guān)D.數(shù)據(jù)質(zhì)量問(wèn)題需要在數(shù)據(jù)挖掘的整個(gè)過(guò)程中進(jìn)行關(guān)注和處理8、假設(shè)我們要分析某地區(qū)不同年齡段人口的收入水平,以下哪種數(shù)據(jù)分析方法可以直觀(guān)地展示收入隨年齡的變化趨勢(shì)?()A.分組柱狀圖B.折線(xiàn)圖C.箱線(xiàn)圖D.直方圖9、在數(shù)據(jù)分析中,若要研究多個(gè)變量之間的非線(xiàn)性關(guān)系,以下哪種方法可能會(huì)被采用?()A.多項(xiàng)式回歸B.嶺回歸C.套索回歸D.以上都有可能10、對(duì)于一個(gè)包含多個(gè)變量的數(shù)據(jù)集,想要了解變量之間的線(xiàn)性關(guān)系強(qiáng)度,可以計(jì)算?()A.方差B.協(xié)方差C.相關(guān)系數(shù)D.偏度11、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的步驟有很多,其中數(shù)據(jù)清理是一個(gè)重要的步驟。以下關(guān)于數(shù)據(jù)清理的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)清理可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)清理可以填補(bǔ)數(shù)據(jù)中的缺失值C.數(shù)據(jù)清理可以統(tǒng)一數(shù)據(jù)的格式和單位D.數(shù)據(jù)清理可以增加數(shù)據(jù)的數(shù)量和多樣性12、假設(shè)要分析股票市場(chǎng)數(shù)據(jù)的波動(dòng)性,以下關(guān)于波動(dòng)性分析方法的描述,正確的是:()A.計(jì)算簡(jiǎn)單移動(dòng)平均就能準(zhǔn)確衡量股票價(jià)格的波動(dòng)性B.標(biāo)準(zhǔn)差越大,說(shuō)明股票價(jià)格的波動(dòng)性越小C.歷史波動(dòng)率對(duì)預(yù)測(cè)未來(lái)股票價(jià)格的波動(dòng)沒(méi)有參考價(jià)值D.采用ARCH和GARCH模型可以更好地捕捉股票價(jià)格波動(dòng)的聚類(lèi)性和異方差性13、關(guān)于數(shù)據(jù)分析中的多變量分析,假設(shè)要同時(shí)研究多個(gè)自變量對(duì)因變量的影響。以下哪種方法可以幫助我們理解變量之間的復(fù)雜關(guān)系和交互作用?()A.多元線(xiàn)性回歸B.因子分析,提取公共因子C.偏最小二乘回歸D.只研究單個(gè)變量與因變量的關(guān)系14、在數(shù)據(jù)庫(kù)管理中,當(dāng)多個(gè)用戶(hù)同時(shí)對(duì)同一數(shù)據(jù)表進(jìn)行操作時(shí),為了保證數(shù)據(jù)的一致性,通常會(huì)采用哪種技術(shù)?()A.數(shù)據(jù)備份B.事務(wù)處理C.數(shù)據(jù)加密D.索引優(yōu)化15、數(shù)據(jù)分析中的數(shù)據(jù)集成涉及將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)要整合來(lái)自不同部門(mén)的銷(xiāo)售數(shù)據(jù)、庫(kù)存數(shù)據(jù)和客戶(hù)數(shù)據(jù),這些數(shù)據(jù)格式不一致且存在重復(fù)和沖突。以下哪種數(shù)據(jù)集成方法在處理這種復(fù)雜的數(shù)據(jù)整合問(wèn)題時(shí)更能確保數(shù)據(jù)的一致性和準(zhǔn)確性?()A.基于ETL工具的集成B.手動(dòng)編寫(xiě)代碼進(jìn)行集成C.直接合并數(shù)據(jù),忽略沖突D.隨機(jī)選擇部分?jǐn)?shù)據(jù)進(jìn)行集成16、在進(jìn)行關(guān)聯(lián)分析時(shí),如果兩個(gè)商品的支持度很高,但置信度很低,說(shuō)明:()A.這兩個(gè)商品經(jīng)常被同時(shí)購(gòu)買(mǎi),但這種關(guān)聯(lián)不是很可靠B.這兩個(gè)商品很少被同時(shí)購(gòu)買(mǎi),但一旦同時(shí)購(gòu)買(mǎi),關(guān)聯(lián)很強(qiáng)C.這種關(guān)聯(lián)是虛假的,沒(méi)有實(shí)際意義D.無(wú)法得出明確的結(jié)論17、在數(shù)據(jù)分析中,數(shù)據(jù)安全是一個(gè)重要的問(wèn)題。以下關(guān)于數(shù)據(jù)安全的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)安全包括數(shù)據(jù)的保密性、完整性和可用性等方面B.數(shù)據(jù)安全問(wèn)題可能會(huì)導(dǎo)致數(shù)據(jù)泄露、篡改和丟失等后果C.提高數(shù)據(jù)安全可以通過(guò)加密、備份和訪(fǎng)問(wèn)控制等方法來(lái)實(shí)現(xiàn)D.數(shù)據(jù)安全只與數(shù)據(jù)的存儲(chǔ)和傳輸有關(guān),與數(shù)據(jù)分析的過(guò)程無(wú)關(guān)18、某數(shù)據(jù)分析項(xiàng)目需要對(duì)大量文本數(shù)據(jù)進(jìn)行情感分析。以下哪種技術(shù)常用于文本情感分析?()A.決策樹(shù)B.樸素貝葉斯C.支持向量機(jī)D.詞袋模型19、假設(shè)要對(duì)大量數(shù)據(jù)進(jìn)行快速排序,以下哪種算法在平均情況下性能較好?()A.冒泡排序B.插入排序C.快速排序D.選擇排序20、假設(shè)要分析消費(fèi)者對(duì)新產(chǎn)品的反饋意見(jiàn),以下關(guān)于意見(jiàn)分析方法的描述,正確的是:()A.人工閱讀所有反饋意見(jiàn),憑主觀(guān)判斷總結(jié)主要觀(guān)點(diǎn)B.利用自然語(yǔ)言處理技術(shù)對(duì)反饋進(jìn)行分類(lèi)和情感分析C.只關(guān)注反饋中的負(fù)面意見(jiàn),忽略正面意見(jiàn)D.對(duì)于模糊不清的反饋意見(jiàn),直接忽略不計(jì)二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋什么是數(shù)據(jù)漂移,說(shuō)明其對(duì)模型性能的影響,并列舉至少兩種檢測(cè)和應(yīng)對(duì)數(shù)據(jù)漂移的方法。2、(本題5分)描述數(shù)據(jù)分析中的模型融合技術(shù),如集成學(xué)習(xí)中的隨機(jī)森林、Adaboost等的原理和優(yōu)勢(shì),并說(shuō)明如何選擇合適的融合方法。3、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的標(biāo)準(zhǔn)化和歸一化?請(qǐng)說(shuō)明它們的目的、方法和適用場(chǎng)景,并舉例說(shuō)明。4、(本題5分)在大數(shù)據(jù)分析中,流數(shù)據(jù)處理是常見(jiàn)的場(chǎng)景。請(qǐng)說(shuō)明流數(shù)據(jù)的特點(diǎn)和處理流數(shù)據(jù)的常用技術(shù),如Storm、Flink等的工作原理。5、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何結(jié)合業(yè)務(wù)知識(shí)進(jìn)行數(shù)據(jù)解讀和分析?闡述業(yè)務(wù)理解在數(shù)據(jù)分析中的重要性,并舉例說(shuō)明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某超市的會(huì)員卡系統(tǒng)記錄了顧客的購(gòu)買(mǎi)數(shù)據(jù),涵蓋商品類(lèi)別、購(gòu)買(mǎi)數(shù)量、消費(fèi)金額、會(huì)員等級(jí)等。分析不同會(huì)員等級(jí)顧客的購(gòu)買(mǎi)習(xí)慣和消費(fèi)金額的差異。2、(本題5分)一家健身中心的私教課程記錄了會(huì)員數(shù)據(jù),包括課程類(lèi)型、教練資質(zhì)、會(huì)員年齡、續(xù)課情況等。探討課程類(lèi)型和教練資質(zhì)對(duì)會(huì)員續(xù)課的作用。3、(本題5分)某電商平臺(tái)的家居用品類(lèi)目擁有銷(xiāo)售數(shù)據(jù)、用戶(hù)搜索關(guān)鍵詞、商品評(píng)價(jià)等。分析家居用品市場(chǎng)的需求趨勢(shì)和用戶(hù)關(guān)注點(diǎn),改進(jìn)產(chǎn)品推薦和選品策略。4、(本題5分)一家零食店擁有銷(xiāo)售數(shù)據(jù)、顧客口味偏好、新品推廣效果等。研發(fā)新的零食產(chǎn)品,提高店鋪競(jìng)爭(zhēng)力。5、(本題5分)某航空公司擁有乘客的訂票信息、行程安排、常旅客數(shù)據(jù)等。思考如何通過(guò)這些數(shù)據(jù)優(yōu)化航班安排和客戶(hù)忠誠(chéng)度計(jì)劃。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)影視娛樂(lè)行業(yè)可以基于觀(guān)眾的觀(guān)看數(shù)據(jù)和評(píng)價(jià)數(shù)據(jù)進(jìn)行內(nèi)容創(chuàng)作和推薦。闡述如何運(yùn)用數(shù)據(jù)分析了解觀(guān)眾喜好、預(yù)測(cè)熱門(mén)題材、優(yōu)化內(nèi)容推薦算法,以及如何應(yīng)對(duì)盜版和非法傳播等問(wèn)題。2、(本題10分)在電信行業(yè),用戶(hù)通話(huà)記錄、網(wǎng)絡(luò)流量
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 眉山藥科職業(yè)學(xué)院《軟件工程與》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度校園食堂承包與食品安全監(jiān)管合同3篇
- 2024年度汽車(chē)貸款信用保證保險(xiǎn)合同3篇
- 2024年標(biāo)準(zhǔn)版房地產(chǎn)項(xiàng)目資本金監(jiān)管協(xié)議版B版
- 2024年版:教育貸款申請(qǐng)合同3篇
- 影調(diào)的造型作用
- 呂梁師范高等專(zhuān)科學(xué)?!吨袊?guó)城市發(fā)展史》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024全新指紋鎖智能家居控制系統(tǒng)集成合同2篇
- 2024年特色手工藝品買(mǎi)賣(mài)合同詳細(xì)
- 2024年標(biāo)準(zhǔn)膩?zhàn)邮┕趧?wù)分包合同樣本版B版
- 鉆孔灌注樁施工機(jī)械設(shè)備選型與匹配
- 《熱辣滾燙》勵(lì)志主題班會(huì)
- 2024考研英語(yǔ)二試題及答案解析(word版)
- 企業(yè)員工年齡分析報(bào)告
- 新時(shí)代開(kāi)放大學(xué)教育教學(xué)改革的趨勢(shì)與方向
- 【年產(chǎn)6000萬(wàn)包方便面的生產(chǎn)工藝與布局設(shè)計(jì)9900字】
- 《研究方法論》課件
- 專(zhuān)題08 非連續(xù)性文本閱讀(原卷版)-備戰(zhàn)2023-2024學(xué)年九年級(jí)語(yǔ)文上學(xué)期期中真題分類(lèi)匯編(福建專(zhuān)用)
- 《 農(nóng)業(yè)(第1課時(shí))》示范課教學(xué)設(shè)計(jì)【湘教版八年級(jí)地理上冊(cè)】
- 基于杜邦分析法體系下?tīng)I(yíng)運(yùn)能力分析-以海底撈食品股份有限公司為例
- 出院當(dāng)日結(jié)算方案
評(píng)論
0/150
提交評(píng)論