版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南湖北八市十二校2025屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則()A.2 B.3 C.4 D.52.已知雙曲線的中心在原點(diǎn)且一個(gè)焦點(diǎn)為,直線與其相交于,兩點(diǎn),若中點(diǎn)的橫坐標(biāo)為,則此雙曲線的方程是A. B.C. D.3.下列判斷錯(cuò)誤的是()A.若隨機(jī)變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機(jī)變量服從二項(xiàng)分布:,則D.是的充分不必要條件4.已知復(fù)數(shù)滿足,則()A. B. C. D.5.函數(shù)的一個(gè)零點(diǎn)在區(qū)間內(nèi),則實(shí)數(shù)a的取值范圍是()A. B. C. D.6.記等差數(shù)列的公差為,前項(xiàng)和為.若,,則()A. B. C. D.7.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他死后的墓碑上刻著一個(gè)“圓柱容球”的立體幾何圖形,為紀(jì)念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結(jié)論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內(nèi)切球體積為()A. B. C. D.8.函數(shù)f(x)=的圖象大致為()A. B.C. D.9.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件10.若,則下列關(guān)系式正確的個(gè)數(shù)是()①②③④A.1 B.2 C.3 D.411.關(guān)于函數(shù)有下述四個(gè)結(jié)論:()①是偶函數(shù);②在區(qū)間上是單調(diào)遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個(gè)零點(diǎn).其中所有正確結(jié)論的編號(hào)是()A.①②④ B.①③ C.①④ D.②④12.設(shè),若函數(shù)在區(qū)間上有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在平面直角坐標(biāo)系中,過點(diǎn)作傾斜角為的直線,已知直線與圓相交于兩點(diǎn),則弦的長等于____________.14.已知三棱錐,,是邊長為4的正三角形,,分別是、的中點(diǎn),為棱上一動(dòng)點(diǎn)(點(diǎn)除外),,若異面直線與所成的角為,且,則______.15.設(shè)為正實(shí)數(shù),若則的取值范圍是__________.16.已知等邊三角形的邊長為1.,點(diǎn)、分別為線段、上的動(dòng)點(diǎn),則取值的集合為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱錐中,點(diǎn),分別為,的中點(diǎn),且平面平面.求證:平面;若,,求證:平面平面.18.(12分)已知等腰梯形中(如圖1),,,為線段的中點(diǎn),、為線段上的點(diǎn),,現(xiàn)將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.19.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學(xué)生.新生接待其實(shí)也是和社會(huì)溝通的一個(gè)平臺(tái).校團(tuán)委、學(xué)生會(huì)從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對(duì)是否愿意投入到新生接待工作進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:愿意不愿意男生6020女士4040(1)根據(jù)上表說明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);(2)現(xiàn)從參與問卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機(jī)選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82820.(12分)2019年6月,國內(nèi)的運(yùn)營牌照開始發(fā)放.從到,我們國家的移動(dòng)通信業(yè)務(wù)用了不到20年的時(shí)間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對(duì)的消費(fèi)意愿,2019年8月,從某地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預(yù)計(jì)升級(jí)到的時(shí)段人數(shù)早期體驗(yàn)用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學(xué)生升級(jí)時(shí)間的早晚與大學(xué)生愿意為套餐支付更多的費(fèi)用作比較,可得出下圖的關(guān)系(例如早期體驗(yàn)用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗(yàn)用戶的).(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生愿意在2021年或2021年之前升級(jí)到的概率;(2)從樣本的早期體驗(yàn)用戶和中期跟隨用戶中各隨機(jī)抽取1人,以表示這2人中愿意為升級(jí)多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;(3)2019年底,從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐,能否認(rèn)為樣本中早期體驗(yàn)用戶的人數(shù)有變化?說明理由.21.(12分)選修4-5:不等式選講設(shè)函數(shù)f(x)=|x-a|,a<0.(1)證明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求22.(10分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設(shè)二面角的大小為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)分段函數(shù)直接計(jì)算得到答案.【詳解】因?yàn)樗?故選:.【點(diǎn)睛】本題考查了分段函數(shù)計(jì)算,意在考查學(xué)生的計(jì)算能力.2、D【解析】
根據(jù)點(diǎn)差法得,再根據(jù)焦點(diǎn)坐標(biāo)得,解方程組得,,即得結(jié)果.【詳解】設(shè)雙曲線的方程為,由題意可得,設(shè),,則的中點(diǎn)為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【點(diǎn)睛】本題主要考查利用點(diǎn)差法求雙曲線標(biāo)準(zhǔn)方程,考查基本求解能力,屬于中檔題.3、D【解析】
根據(jù)正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識(shí),依次對(duì)四個(gè)選項(xiàng)加以分析判斷,進(jìn)而可求解.【詳解】對(duì)于選項(xiàng),若隨機(jī)變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對(duì)稱性,有,故選項(xiàng)正確,不符合題意;對(duì)于選項(xiàng),已知直線平面,直線平面,則當(dāng)時(shí)一定有,充分性成立,而當(dāng)時(shí),不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項(xiàng)正確,不符合題意;對(duì)于選項(xiàng),若隨機(jī)變量服從二項(xiàng)分布:,則,故選項(xiàng)正確,不符合題意;對(duì)于選項(xiàng),,僅當(dāng)時(shí)有,當(dāng)時(shí),不成立,故充分性不成立;若,僅當(dāng)時(shí)有,當(dāng)時(shí),不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項(xiàng)不正確,符合題意.故選:D【點(diǎn)睛】本題考查正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識(shí),考查理解辨析能力與運(yùn)算求解能力,屬于基礎(chǔ)題.4、A【解析】
由復(fù)數(shù)的運(yùn)算法則計(jì)算.【詳解】因?yàn)?,所以故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算.屬于簡單題.5、C【解析】
顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個(gè)零點(diǎn)在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因?yàn)榈囊粋€(gè)零點(diǎn)在區(qū)間內(nèi),所以,即,解得,故選:C【點(diǎn)睛】本題考查零點(diǎn)存在性定理的應(yīng)用,屬于基礎(chǔ)題.6、C【解析】
由,和,可求得,從而求得和,再驗(yàn)證選項(xiàng).【詳解】因?yàn)椋?,所以解得,所以,所以,,,故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,還考查運(yùn)算求解能力,屬于中檔題.7、D【解析】
設(shè)圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結(jié)合題中的結(jié)論即可求出該圓柱的內(nèi)切球體積.【詳解】設(shè)圓柱的底面半徑為,則其母線長為,因?yàn)閳A柱的表面積公式為,所以,解得,因?yàn)閳A柱的體積公式為,所以,由題知,圓柱內(nèi)切球的體積是圓柱體積的,所以所求圓柱內(nèi)切球的體積為.故選:D【點(diǎn)睛】本題考查圓柱的軸截面及表面積和體積公式;考查運(yùn)算求解能力;熟練掌握?qǐng)A柱的表面積和體積公式是求解本題的關(guān)鍵;屬于中檔題.8、D【解析】
根據(jù)函數(shù)為非偶函數(shù)可排除兩個(gè)選項(xiàng),再根據(jù)特殊值可區(qū)分剩余兩個(gè)選項(xiàng).【詳解】因?yàn)閒(-x)=≠f(x)知f(x)的圖象不關(guān)于y軸對(duì)稱,排除選項(xiàng)B,C.又f(2)==-<0.排除A,故選D.【點(diǎn)睛】本題主要考查了函數(shù)圖象的對(duì)稱性及特值法區(qū)分函數(shù)圖象,屬于中檔題.9、C【解析】
根據(jù)對(duì)數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點(diǎn)睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對(duì)數(shù)不等式的解法,是基礎(chǔ)題.10、D【解析】
a,b可看成是與和交點(diǎn)的橫坐標(biāo),畫出圖象,數(shù)形結(jié)合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點(diǎn)睛】本題考查利用函數(shù)圖象比較大小,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.11、C【解析】
根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn)對(duì)四個(gè)結(jié)論逐一分析,由此得出正確結(jié)論的編號(hào).【詳解】的定義域?yàn)?由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以②錯(cuò)誤.當(dāng)時(shí),,且存在,使.所以當(dāng)時(shí),;由于為偶函數(shù),所以時(shí),所以的最大值為,所以③錯(cuò)誤.依題意,,當(dāng)時(shí),,所以令,解得,令,解得.所以在區(qū)間,有兩個(gè)零點(diǎn).由于為偶函數(shù),所以在區(qū)間有兩個(gè)零點(diǎn).故在區(qū)間上有4個(gè)零點(diǎn).所以④正確.綜上所述,正確的結(jié)論序號(hào)為①④.故選:C【點(diǎn)睛】本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.12、D【解析】令,可得.在坐標(biāo)系內(nèi)畫出函數(shù)的圖象(如圖所示).當(dāng)時(shí),.由得.設(shè)過原點(diǎn)的直線與函數(shù)的圖象切于點(diǎn),則有,解得.所以當(dāng)直線與函數(shù)的圖象切時(shí).又當(dāng)直線經(jīng)過點(diǎn)時(shí),有,解得.結(jié)合圖象可得當(dāng)直線與函數(shù)的圖象有3個(gè)交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是.即函數(shù)在區(qū)間上有三個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍是.選D.點(diǎn)睛:已知函數(shù)零點(diǎn)的個(gè)數(shù)(方程根的個(gè)數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對(duì)于一些比較復(fù)雜的函數(shù)的零點(diǎn)問題常用此方法求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.14、【解析】
取的中點(diǎn),連接,,取的中點(diǎn),連接,,,直線與所成的角為,計(jì)算,,根據(jù)余弦定理計(jì)算得到答案?!驹斀狻咳〉闹悬c(diǎn),連接,,依題意可得,,所以平面,所以,因?yàn)?,分別、的中點(diǎn),所以,因?yàn)椋?,所以平面,故,故,故兩兩垂直。取的中點(diǎn),連接,,,因?yàn)?,所以直線與所成的角為,設(shè),則,,所以,化簡得,解得,即.故答案為:.【點(diǎn)睛】本題考查了根據(jù)異面直線夾角求長度,意在考查學(xué)生的計(jì)算能力和空間想象能力.15、【解析】
根據(jù),可得,進(jìn)而,有,而,令,得到,再用導(dǎo)數(shù)法求解,【詳解】因?yàn)椋?,所以,所以,所以,令,,所以,?dāng)時(shí),,當(dāng)時(shí),所以當(dāng)時(shí),取得最大值,又,所以取值范圍是,故答案為:【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用和導(dǎo)數(shù)法求最值,還考查了運(yùn)算求解的能力,屬于難題,16、【解析】
根據(jù)題意建立平面直角坐標(biāo)系,設(shè)三角形各點(diǎn)的坐標(biāo),依題意求出,,,的表達(dá)式,再進(jìn)行數(shù)量積的運(yùn)算,最后求和即可得出結(jié)果.【詳解】解:以的中點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,線段的垂直平分線為軸建立平面直角坐標(biāo)系,如圖所示,則,,,,則,,,設(shè),,,即點(diǎn)的坐標(biāo)為,則,,,所以故答案為:【點(diǎn)睛】本題考查平面向量的坐標(biāo)表示和線性運(yùn)算,以及平面向量基本定理和數(shù)量積的運(yùn)算,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、證明見解析;證明見解析.【解析】
利用線面平行的判定定理求證即可;為中點(diǎn),為中點(diǎn),可得,,,可知,故為直角三角形,,利用面面垂直的判定定理求證即可.【詳解】解:證明:為中點(diǎn),為中點(diǎn),,又平面,平面,平面;證明:為中點(diǎn),為中點(diǎn),,又,,則,故為直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【點(diǎn)睛】本題考查線面平行和面面垂直的判定定理的應(yīng)用,屬于基礎(chǔ)題.18、(1)見解析;(2).【解析】
(1)先連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)在圖2中,過點(diǎn)作,垂足為,連接,,證明平面平面,得到點(diǎn)在底面上的投影必落在直線上,記為點(diǎn)在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結(jié)果.【詳解】(1)連接,因?yàn)榈妊菪沃校ㄈ鐖D1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點(diǎn),為中點(diǎn),易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關(guān)系沒有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因?yàn)槠矫妫矫?,所以平面;?)在圖2中,過點(diǎn)作,垂足為,連接,,因?yàn)?,,翻折前梯形的高為,所以,則,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點(diǎn)在底面上的投影必落在直線上;記為點(diǎn)在底面上的投影,連接,,則平面;所以即是直線與平面所成角,因?yàn)?,所以,因此,,故;因?yàn)椋?,因此,故,所?即直線與平面所成角的正弦值為.【點(diǎn)睛】本題主要考查證明線面平行,以及求直線與平面所成的角,熟記線面平行的判定定理,以及線面角的求法即可,屬于??碱}型.19、(1)有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);(2)詳見解析.【解析】
(1)計(jì)算得到,由此可得結(jié)論;(2)根據(jù)分層抽樣原則可得男生和女生人數(shù),由超幾何分布概率公式可求得的所有可能取值所對(duì)應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望計(jì)算公式計(jì)算可得期望.【詳解】(1)∵的觀測(cè)值,有的把握認(rèn)為愿意參加新生接待工作與性別有關(guān).(2)根據(jù)分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人.則的可能取值有,,,,,的分布列為:.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)、分層抽樣、超幾何分布的分布列和數(shù)學(xué)期望的求解;關(guān)鍵是能夠明確隨機(jī)變量服從于超幾何分布,進(jìn)而利用超幾何分布概率公式求得隨機(jī)變量每個(gè)取值所對(duì)應(yīng)的概率.20、(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒有發(fā)生變化,詳見解析【解析】
(1)由從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級(jí)到,結(jié)合古典摡型的概率計(jì)算公式,即可求解;(2)由題意的所有可能值為,利用相互獨(dú)立事件的概率計(jì)算公式,分別求得相應(yīng)的概率,得到隨機(jī)變量的分布列,利用期望的公式,即可求解.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,得到七概率為,即可得到結(jié)論.【詳解】(1)由題意可知,從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級(jí)到的概率估計(jì)為樣本中早期體驗(yàn)用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗(yàn)用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級(jí)多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級(jí)多支付10元或10元以上”,由題意可知,事件,相互獨(dú)立,且,,所以,,,所以的分布列為0120.180.490.33故的數(shù)學(xué)期望.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,那么.回答一:事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒有發(fā)生變化.回答二:事件發(fā)生概率小,所以可以認(rèn)為早期體驗(yàn)用戶人數(shù)增加.【點(diǎn)睛】本題主要考查了離散型隨機(jī)變量的分布列,數(shù)學(xué)期望的求解及應(yīng)用,對(duì)于求離散型隨機(jī)變量概率分布列問題首先要清楚離散型隨機(jī)變量的可能取值,計(jì)算得出概率,列出離散型隨機(jī)變量概率分布列,最后按照數(shù)學(xué)期望公式計(jì)算出數(shù)學(xué)期望,其中列出離散型隨機(jī)變量概率分布列及計(jì)算數(shù)學(xué)期望是理科高考數(shù)學(xué)必考問題.21、(1)見解析.(1)(-1,0).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年滬科版九年級(jí)歷史上冊(cè)月考試卷
- 2024年粵教新版九年級(jí)數(shù)學(xué)下冊(cè)月考試卷
- 2024年華師大版選擇性必修3物理下冊(cè)階段測(cè)試試卷
- 2024-2025學(xué)年廣西河池地區(qū)三上數(shù)學(xué)期末調(diào)研模擬試題含解析
- 創(chuàng)新教育視角下的小學(xué)生自然科學(xué)動(dòng)手實(shí)踐研究
- 企業(yè)如何構(gòu)建高效能的服務(wù)支持團(tuán)隊(duì)
- 商業(yè)教育中的運(yùn)動(dòng)安全與設(shè)施建設(shè)探討
- 2025中國聯(lián)通龍游分公司招聘6人(浙江)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國社會(huì)科學(xué)院世界歷史研究所第一批科研人員公開招聘7人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中儲(chǔ)糧集團(tuán)財(cái)務(wù)限公司人員招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 【人民日?qǐng)?bào)】72則金句期末評(píng)語模板-每頁4張
- 合伙人散伙分家協(xié)議書范文
- 內(nèi)科學(xué)(廣東藥科大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年廣東藥科大學(xué)
- 2024年遼寧裝備制造職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測(cè)試題庫帶答案
- (正式版)JTT 1497-2024 公路橋梁塔柱施工平臺(tái)及通道安全技術(shù)要求
- python程序設(shè)計(jì)-說課
- ISO15614-1 2017 金屬材料焊接工藝規(guī)程及評(píng)定(中文版)
- 《單片機(jī)技術(shù)》課件-2-3實(shí)現(xiàn)電子門鈴 -實(shí)操
- 《中國潰瘍性結(jié)腸炎診治指南(2023年)》解讀
- 2024年知識(shí)競(jìng)賽-中小學(xué)財(cái)務(wù)管理知識(shí)筆試參考題庫含答案
- 學(xué)術(shù)英語(下)智慧樹知到期末考試答案2024年
評(píng)論
0/150
提交評(píng)論