2025屆黔東南州高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第1頁(yè)
2025屆黔東南州高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第2頁(yè)
2025屆黔東南州高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第3頁(yè)
2025屆黔東南州高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第4頁(yè)
2025屆黔東南州高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆黔東南州高考適應(yīng)性考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長(zhǎng)為1),則這個(gè)幾何體的體積是()A. B. C.16 D.322.已知定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則()A.1 B.-1 C.2 D.-23.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c4.已知平面向量,滿足且,若對(duì)每一個(gè)確定的向量,記的最小值為,則當(dāng)變化時(shí),的最大值為()A. B. C. D.15.已知,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn),則正實(shí)數(shù)的取值范圍為()A. B. C. D.6.在正方體中,球同時(shí)與以為公共頂點(diǎn)的三個(gè)面相切,球同時(shí)與以為公共頂點(diǎn)的三個(gè)面相切,且兩球相切于點(diǎn).若以為焦點(diǎn),為準(zhǔn)線的拋物線經(jīng)過(guò),設(shè)球的半徑分別為,則()A. B. C. D.7.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.8.已知集合,則=()A. B. C. D.9.《周易》是我國(guó)古代典籍,用“卦”描述了天地世間萬(wàn)象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中“”表示一個(gè)陽(yáng)爻,“”表示一個(gè)陰爻).若從含有兩個(gè)及以上陽(yáng)爻的卦中任取兩卦,這兩卦的六個(gè)爻中都恰有兩個(gè)陽(yáng)爻的概率為()A. B. C. D.10.單位正方體ABCD-,黑、白兩螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩螞蟻的距離是()A.1 B. C. D.011.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學(xué)期望,則的取值范圍為()A. B. C. D.12.已知函數(shù)滿足,當(dāng)時(shí),,則()A.或 B.或C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.如圖,橢圓:的離心率為,F(xiàn)是的右焦點(diǎn),點(diǎn)P是上第一角限內(nèi)任意一點(diǎn),,,若,則的取值范圍是_______.14.運(yùn)行下面的算法偽代碼,輸出的結(jié)果為_____.15.若函數(shù)在和上均單調(diào)遞增,則實(shí)數(shù)的取值范圍為________.16.(5分)已知函數(shù),則不等式的解集為____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知是各項(xiàng)都為正數(shù)的數(shù)列,其前項(xiàng)和為,且為與的等差中項(xiàng).(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求的前100項(xiàng)和.18.(12分)在中,角,,的對(duì)邊分別為,,,已知.(1)若,,成等差數(shù)列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.19.(12分)若關(guān)于的方程的兩根都大于2,求實(shí)數(shù)的取值范圍.20.(12分)已知數(shù)列的各項(xiàng)都為正數(shù),,且.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),其中表示不超過(guò)x的最大整數(shù),如,,求數(shù)列的前2020項(xiàng)和.21.(12分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值22.(10分)已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).(1)設(shè)直線,的斜率分別為,,求證:常數(shù);(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);②當(dāng)?shù)膬?nèi)切圓的面積為時(shí),求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】幾何體為一個(gè)三棱錐,高為4,底面為一個(gè)等腰直角三角形,直角邊長(zhǎng)為4,所以體積是,選A.2、B【解析】

根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時(shí),f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時(shí),;∴由奇函數(shù)性質(zhì)可得;∴;∴時(shí),;∴.故選:B.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問(wèn)題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來(lái)求解,考查理解能力和計(jì)算能力,屬于中等題.3、A【解析】

利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【點(diǎn)睛】本題考查三個(gè)數(shù)的大小的判斷,考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.4、B【解析】

根據(jù)題意,建立平面直角坐標(biāo)系.令.為中點(diǎn).由即可求得點(diǎn)的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點(diǎn)共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當(dāng)與圓相切時(shí),有最大值.利用圓的切線性質(zhì)及點(diǎn)到直線距離公式即可求得直線方程,進(jìn)而求得原點(diǎn)到直線的距離,即為的最大值.【詳解】根據(jù)題意,設(shè),則由代入可得即點(diǎn)的軌跡方程為又因?yàn)?變形可得,即,且所以由平面向量基本定理可知三點(diǎn)共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當(dāng)與圓相切時(shí),有最大值設(shè)切線的方程為,化簡(jiǎn)可得由切線性質(zhì)及點(diǎn)到直線距離公式可得,化簡(jiǎn)可得即所以切線方程為或所以當(dāng)變化時(shí),到直線的最大值為即的最大值為故選:B【點(diǎn)睛】本題考查了平面向量的坐標(biāo)應(yīng)用,平面向量基本定理的應(yīng)用,圓的軌跡方程問(wèn)題,圓的切線性質(zhì)及點(diǎn)到直線距離公式的應(yīng)用,綜合性強(qiáng),屬于難題.5、B【解析】

先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn)即為三個(gè)最值點(diǎn),解出,,再建立不等式求出的范圍,進(jìn)而求得的范圍.【詳解】解:令,解得對(duì)稱軸,,又函數(shù)在區(qū)間恰有個(gè)極值點(diǎn),只需解得.故選:.【點(diǎn)睛】本題考查利用向量的數(shù)量積運(yùn)算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問(wèn)題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.6、D【解析】

由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線的距離即點(diǎn)到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點(diǎn)都在體對(duì)角線上,通過(guò)幾何關(guān)系可轉(zhuǎn)化出,進(jìn)而求解【詳解】根據(jù)拋物線的定義,點(diǎn)到點(diǎn)的距離與到直線的距離相等,其中點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線的距離即點(diǎn)到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個(gè)球心和兩球的切點(diǎn)均在體對(duì)角線上,兩個(gè)球在平面處的截面如圖所示,則,所以.又因?yàn)椋虼?,得,所?故選:D【點(diǎn)睛】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運(yùn)算的核心素養(yǎng)7、B【解析】

奇函數(shù)滿足定義域關(guān)于原點(diǎn)對(duì)稱且,在上即可.【詳解】A:因?yàn)槎x域?yàn)?,所以不可能時(shí)奇函數(shù),錯(cuò)誤;B:定義域關(guān)于原點(diǎn)對(duì)稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點(diǎn)對(duì)稱,且滿足奇函數(shù),,在上,因?yàn)椋栽谏喜皇窃龊瘮?shù),錯(cuò)誤;D:定義域關(guān)于原點(diǎn)對(duì)稱,且,滿足奇函數(shù),在上很明顯存在變號(hào)零點(diǎn),所以在上不是增函數(shù),錯(cuò)誤;故選:B【點(diǎn)睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點(diǎn)對(duì)稱,屬于簡(jiǎn)單題目.8、D【解析】

先求出集合A,B,再求集合B的補(bǔ)集,然后求【詳解】,所以.故選:D【點(diǎn)睛】此題考查的是集合的并集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.9、B【解析】

基本事件總數(shù)為個(gè),都恰有兩個(gè)陽(yáng)爻包含的基本事件個(gè)數(shù)為個(gè),由此求出概率.【詳解】解:由圖可知,含有兩個(gè)及以上陽(yáng)爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個(gè),其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個(gè),所以,所求的概率.故選:B.【點(diǎn)睛】本題滲透?jìng)鹘y(tǒng)文化,考查概率、計(jì)數(shù)原理等基本知識(shí),考查抽象概括能力和應(yīng)用意識(shí),屬于基礎(chǔ)題.10、B【解析】

根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過(guò)幾段后又回到起點(diǎn),得到每爬1步回到起點(diǎn),周期為1.計(jì)算黑螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn)以及計(jì)算白螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn),即可計(jì)算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過(guò)1段后又回到起點(diǎn),可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點(diǎn);同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點(diǎn),所以它們此時(shí)的距離為.故選B.【點(diǎn)睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題,考查空間想象與推理能力,屬于中等題.11、A【解析】

根據(jù)題意,分別求出再根據(jù)離散型隨機(jī)變量期望公式進(jìn)行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點(diǎn)睛】本題考查離散型隨機(jī)變量期望的求解,易錯(cuò)點(diǎn)為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功12、C【解析】

簡(jiǎn)單判斷可知函數(shù)關(guān)于對(duì)稱,然后根據(jù)函數(shù)的單調(diào)性,并計(jì)算,結(jié)合對(duì)稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對(duì)稱當(dāng)時(shí),,可知在單調(diào)遞增則又函數(shù)關(guān)于對(duì)稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗(yàn)分析能力,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由于點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),與軸的正方向的夾角在變,所以先設(shè),又由,可知,從而可得,而點(diǎn)在橢圓上,所以將點(diǎn)的坐標(biāo)代入橢圓方程中化簡(jiǎn)可得結(jié)果.【詳解】設(shè),,,則,由,得,代入橢圓方程,得,化簡(jiǎn)得恒成立,由此得,即,故.故答案為:【點(diǎn)睛】此題考查的是利用橢圓中相關(guān)兩個(gè)點(diǎn)的關(guān)系求離心率,綜合性強(qiáng),屬于難題.14、【解析】

模擬程序的運(yùn)行過(guò)程知該程序運(yùn)行后計(jì)算并輸出的值,用裂項(xiàng)相消法求和即可.【詳解】模擬程序的運(yùn)行過(guò)程知,該程序運(yùn)行后執(zhí)行:.故答案為:【點(diǎn)睛】本題考查算法語(yǔ)句中的循環(huán)語(yǔ)句和裂項(xiàng)相消法求和;掌握循環(huán)體執(zhí)行的次數(shù)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.15、【解析】

化簡(jiǎn)函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可.【詳解】由知,當(dāng)時(shí),在和上單調(diào)遞增,在和上均單調(diào)遞增,,

的取值范圍為:.

故答案為:.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題.16、【解析】

易知函數(shù)的定義域?yàn)椋?,則是上的偶函數(shù).由于在上單調(diào)遞增,而在上也單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性知在上單調(diào)遞增,又在上單調(diào)遞增,故知在上單調(diào)遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調(diào)遞增,可得,則,解得,故不等式的解集為.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析;(2).【解析】

(1)利用已知條件化簡(jiǎn)出,當(dāng)時(shí),,當(dāng)時(shí),再利用進(jìn)行化簡(jiǎn),得出,即可證明出為等差數(shù)列;(2)根據(jù)(1)中,求出數(shù)列的通項(xiàng)公式,再化簡(jiǎn)出,可直接求出的前100項(xiàng)和.【詳解】解:(1)由題意知,即,①當(dāng)時(shí),由①式可得;又時(shí),有,代入①式得,整理得,∴是首項(xiàng)為1,公差為1的等差數(shù)列.(2)由(1)可得,∵是各項(xiàng)都為正數(shù),∴,∴,又,∴,則,,即:.∴的前100項(xiàng)和.【點(diǎn)睛】本題考查數(shù)列遞推關(guān)系的應(yīng)用,通項(xiàng)公式的求法以及裂項(xiàng)相消法求和,考查分析解題能力和計(jì)算能力.18、見解析【解析】

(1)因?yàn)椋?,成等差?shù)列,所以,由余弦定理可得,因?yàn)?,所以,即,所以.?)若B為直角,則,,由及正弦定理可得,所以,即,上式兩邊同時(shí)平方,可得,所以(*).又,所以,,所以,與(*)矛盾,所以不存在滿足為直角.19、【解析】

先令,根據(jù)題中條件得到,求解,即可得出結(jié)果.【詳解】因?yàn)殛P(guān)于的方程的兩根都大于2,令所以有,解得,所以.【點(diǎn)睛】本題主要考查一元二次方程根的分布問(wèn)題,熟記二次函數(shù)的特征即可,屬于常考題型.20、(Ⅰ);(Ⅱ)4953【解析】

(Ⅰ)遞推公式變形為,由數(shù)列是正項(xiàng)數(shù)列,得到,根據(jù)數(shù)列是等比數(shù)列求通項(xiàng)公式;(Ⅱ),根據(jù)新定義和對(duì)數(shù)的運(yùn)算分類討論數(shù)列的通項(xiàng)公式,并求前2020項(xiàng)和.【詳解】(Ⅰ)∵,∴,∴又∵數(shù)列的各項(xiàng)都為正數(shù),∴,即.∴數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列,∴.(Ⅱ)∵,∴,.∴數(shù)列的前2020項(xiàng)的和為.【點(diǎn)睛】本題考查根據(jù)數(shù)列的遞推公式求通項(xiàng)公式和數(shù)列的前項(xiàng)和,意在考查轉(zhuǎn)化與化歸的思想,計(jì)算能力,屬于中檔題型.21、(1)的極坐標(biāo)方程為.曲線的直角坐標(biāo)方程為.(2)【解析】

(1)先得到的一般方程,再由極坐標(biāo)化直角坐標(biāo)的公式得到一般方程,將代入得,得到曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論