版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江西省吉安市五校高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.2.函數(shù)的圖象與函數(shù)的圖象的交點橫坐標(biāo)的和為()A. B. C. D.3.胡夫金字塔是底面為正方形的錐體,四個側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長度約為A. B.C. D.4.設(shè)集合,集合,則=()A. B. C. D.R5.已知點是雙曲線上一點,若點到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.26.若直線與曲線相切,則()A.3 B. C.2 D.7.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種8.已知向量,,則向量與的夾角為()A. B. C. D.9.已知橢圓內(nèi)有一條以點為中點的弦,則直線的方程為()A. B.C. D.10.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.11.我國古代數(shù)學(xué)名著《九章算術(shù)》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺12.我國南北朝時的數(shù)學(xué)著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在區(qū)間上有且僅有一個零點,則實數(shù)的取值范圍有___________.14.若實數(shù),滿足不等式組,則的最小值為______.15.銳角中,角,,所對的邊分別為,,,若,則的取值范圍是______.16.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側(cè)面積的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)設(shè)點,若直線與曲線相交于、兩點,求的值18.(12分)已知,.(1)解;(2)若,證明:.19.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應(yīng)的變換將點(3,1)變?yōu)辄c(1,1).求實數(shù)a,k的值.20.(12分)已知函數(shù).(1)若函數(shù)的圖象與軸有且只有一個公共點,求實數(shù)的取值范圍;(2)若對任意成立,求實數(shù)的取值范圍.21.(12分)已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出曲線的極坐標(biāo)方程;(2)點是曲線上的一點,試判斷點與曲線的位置關(guān)系.22.(10分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優(yōu)?。▓A上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當(dāng)為何值時,棧道總長度最短.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設(shè)點位于第二象限,可求得點的坐標(biāo),再由直線與直線垂直,轉(zhuǎn)化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【詳解】設(shè)點位于第二象限,由于軸,則點的橫坐標(biāo)為,縱坐標(biāo)為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點睛】本題考查雙曲線離心率的計算,解答的關(guān)鍵就是得出、、的等量關(guān)系,考查計算能力,屬于中等題.2、B【解析】
根據(jù)兩個函數(shù)相等,求出所有交點的橫坐標(biāo),然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點的橫坐標(biāo)的和,故選B.【點睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運算的核心素養(yǎng).3、D【解析】
設(shè)胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側(cè)棱長為,所以需要燈帶的總長度約為,故選D.4、D【解析】試題分析:由題,,,選D考點:集合的運算5、A【解析】
設(shè)點的坐標(biāo)為,代入橢圓方程可得,然后分別求出點到兩條漸近線的距離,由距離之積為,并結(jié)合,可得到的齊次方程,進而可求出離心率的值.【詳解】設(shè)點的坐標(biāo)為,有,得.雙曲線的兩條漸近線方程為和,則點到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【點睛】本題考查雙曲線的離心率,構(gòu)造的齊次方程是解決本題的關(guān)鍵,屬于中檔題.6、A【解析】
設(shè)切點為,對求導(dǎo),得到,從而得到切線的斜率,結(jié)合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關(guān)直線與曲線相切求參數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.7、D【解析】
采取分類計數(shù)和分步計數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應(yīng)用,插空法的應(yīng)用,屬于基礎(chǔ)題8、C【解析】
求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標(biāo)運算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時,通常代入公式進行計算.9、C【解析】
設(shè),,則,,相減得到,解得答案.【詳解】設(shè),,設(shè)直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.【點睛】本題考查了橢圓內(nèi)點差法求直線方程,意在考查學(xué)生的計算能力和應(yīng)用能力.10、B【解析】
每個式子的值依次構(gòu)成一個數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個數(shù)列,可得數(shù)列滿足,則,,.故選:B.【點睛】本題主要考查歸納推理,解題關(guān)鍵是通過數(shù)列的項歸納出遞推關(guān)系,從而可確定數(shù)列的一些項.11、A【解析】
根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設(shè)球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.12、C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】
函數(shù)的零點方程的根,求出方程的兩根為,,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點方程在區(qū)間的根,所以,解得:,,因為函數(shù)在區(qū)間上有且僅有一個零點,所以或,即或.【點睛】本題考查函數(shù)的零點與方程根的關(guān)系,在求含絕對值方程時,要注意對絕對值內(nèi)數(shù)的正負進行討論.14、5【解析】
根據(jù)題意,畫出圖像,數(shù)形結(jié)合,將目標(biāo)轉(zhuǎn)化為求動直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區(qū)域如圖陰影區(qū)域所示,令,則.分析知,當(dāng),時,取得最小值,且.【點睛】本題考查線性規(guī)劃問題,屬于基礎(chǔ)題15、【解析】
由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數(shù)的性質(zhì)得出的范圍,再利用二倍角公式化簡,即可得出答案.【詳解】由題意得由正弦定理得化簡得又為銳角三角形,則,,.故答案為【點睛】本題主要考查了正弦定理和余弦定理的應(yīng)用,屬于中檔題.16、【解析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時,的最大值為.故答案為:.【點睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉(zhuǎn)化為函數(shù)的最值問題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的普通方程為,的直角坐標(biāo)方程為;(2).【解析】
(1)在曲線的參數(shù)方程中消去參數(shù)可得出曲線的普通方程,利用兩角和的正弦公式以及可將直線的極坐標(biāo)方程化為普通方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),并設(shè)點、所對應(yīng)的參數(shù)分別為、,利用韋達定理可求得的值.【詳解】(1)由,得,,曲線的普通方程為,由,得,直線的直角坐標(biāo)方程為;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入,得,則,設(shè)、兩點對應(yīng)參數(shù)分別為、,,,,,.【點睛】本題考查了參數(shù)方程、極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線參數(shù)方程幾何意義的應(yīng)用,考查計算能力,屬于中等題.18、(1);(2)見解析.【解析】
(1)在不等式兩邊平方化簡轉(zhuǎn)化為二次不等式,解此二次不等式即可得出結(jié)果;(2)利用絕對值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對值三角不等式可得.因此,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用絕對值三角不等式證明不等式,考查推理能力與運算求解能力,屬于中等題.19、解:設(shè)特征向量為α=對應(yīng)的特征值為λ,則=λ,即因為k≠0,所以a=2.5分因為,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點:特征向量,逆矩陣點評:本題主要考查了二階矩陣,以及特征值與特征向量的計算,考查逆矩陣.20、(1)(2)【解析】
(1)求出及其導(dǎo)函數(shù),利用研究的單調(diào)性和最值,根據(jù)零點存在定理和零點定義可得的范圍.(2)令,題意說明時,恒成立.同樣求出導(dǎo)函數(shù),由研究的單調(diào)性,通過分類討論可得的單調(diào)性得出結(jié)論.【詳解】解(1)函數(shù)所以討論:①當(dāng)時,無零點;②當(dāng)時,,所以在上單調(diào)遞增.取,則又,所以,此時函數(shù)有且只有一個零點;③當(dāng)時,令,解得(舍)或當(dāng)時,,所以在上單調(diào)遞減;當(dāng)時,所以在上單調(diào)遞增.據(jù)題意,得,所以(舍)或綜上,所求實數(shù)的取值范圍為.(2)令,根據(jù)題意知,當(dāng)時,恒成立.又討論:①若,則當(dāng)時,恒成立,所以在上是增函數(shù).又函數(shù)在上單調(diào)遞增,在上單調(diào)遞增,所以存在使,不符合題意.②若,則當(dāng)時,恒成立,所以在上是增函數(shù),據(jù)①求解知,不符合題意.③若,則當(dāng)時,恒有,故在上是減函數(shù),于是“對任意成立”的充分條件是“”,即,解得,故綜上,所求實數(shù)的取值范圍是.【點睛】本題考查函數(shù)零點問題,考查不等式恒成立問題,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.解題關(guān)鍵是通過分類討論研究函數(shù)的單調(diào)性.本題難度較大,考查掌握轉(zhuǎn)化與化歸思想,考查學(xué)生分析問題解決問題的能力.21、(1)(2)點在曲線外.【解析】
(1)先消參化曲線的參數(shù)方程為普通方程,再化為極坐標(biāo)方程;(2)由點是曲線上的一點,利用的范圍判斷的范圍,即可判斷位置關(guān)系.【詳解】(1)由曲線的參數(shù)方程為可得曲線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物業(yè)管理聯(lián)合運營協(xié)議范本版B版
- 2024年版家用電器保修協(xié)議樣本版B版
- 文化藝術(shù)中心裝修敲墻合同
- 員工辭退合同
- 城市交通調(diào)度管理辦法
- 門店買賣合同范本
- 企業(yè)-寫字樓租賃合同
- 河北省部分重點高中2024屆高三上學(xué)期期末考試數(shù)學(xué)試題(解析版)
- 木制裝飾木工班組施工合同
- 歷史正劇監(jiān)制合作協(xié)議
- 2022-2023學(xué)年北京市海淀區(qū)七年級(上)期末歷史試題(A)(含答案解析)
- 消化內(nèi)科門診技巧培訓(xùn)課件
- 少兒機器人培訓(xùn)課件
- 中藥封包療法在臨床中的應(yīng)用護理課件
- 水泥砼試模自校隨機表
- 訴訟案件的總結(jié)匯報
- 山東省棗莊市滕州市2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(含答案)
- 北京市東城區(qū)2023-2024學(xué)年高二上學(xué)期期末考試數(shù)學(xué)
- 部隊春節(jié)文藝匯演策劃方案
- 2023-2024學(xué)年廣東省佛山市順德區(qū)七年級(上)期末數(shù)學(xué)試卷(含解析)
- 醫(yī)院信息系統(tǒng)癱瘓應(yīng)急預(yù)案
評論
0/150
提交評論