版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省天長市關(guān)塘中學(xué)2025屆高考數(shù)學(xué)五模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.2.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.03.已知,,則()A. B. C.3 D.44.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.5.在空間直角坐標(biāo)系中,四面體各頂點坐標(biāo)分別為:.假設(shè)螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.6.已知為等腰直角三角形,,,為所在平面內(nèi)一點,且,則()A. B. C. D.7.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.8.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進行分析,隨機抽取了200分到450分之間的2000名學(xué)生的成績,并根據(jù)這2000名學(xué)生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內(nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.16009.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.10.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實數(shù)的取值范圍是()A. B. C. D.11.已知角的終邊經(jīng)過點,則的值是A.1或 B.或 C.1或 D.或12.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}二、填空題:本題共4小題,每小題5分,共20分。13.已知是定義在上的奇函數(shù),當(dāng)時,,則不等式的解集用區(qū)間表示為__________.14.己知雙曲線的左、右焦點分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_______15.已知點為雙曲線的右焦點,兩點在雙曲線上,且關(guān)于原點對稱,若,設(shè),且,則該雙曲線的焦距的取值范圍是________.16.甲,乙兩隊參加關(guān)于“一帶一路”知識競賽,甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,若兩隊各出一名隊員進行比賽,則出場的兩名運動員編號相同的概率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)在處的切線方程;(2)若函數(shù)沒有零點,求實數(shù)的取值范圍.18.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實數(shù)的取值范圍.19.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù)).以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,點P為曲線C上的動點,求點P到直線l距離的最大值.20.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.21.(12分)的內(nèi)角,,的對邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長.22.(10分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點睛】本題考查函數(shù)的切線問題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.2、B【解析】
根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因為即而所以夾角為故選:B【點睛】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.3、A【解析】
根據(jù)復(fù)數(shù)相等的特征,求出和,再利用復(fù)數(shù)的模公式,即可得出結(jié)果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復(fù)數(shù)的特征和復(fù)數(shù)的模,屬于基礎(chǔ)題.4、D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當(dāng)且僅當(dāng)時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.5、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.6、D【解析】
以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運算,可求得點的坐標(biāo),進而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.7、D【解析】
通過計算,可得,最后計算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點睛】本題考查導(dǎo)數(shù)的計算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.8、B【解析】
由圖可列方程算得a,然后求出成績在內(nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績在內(nèi)的學(xué)生人數(shù).【詳解】由頻率和為1,得,解得,所以成績在內(nèi)的頻率,所以成績在內(nèi)的學(xué)生人數(shù).故選:B【點睛】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.9、C【解析】
取中點,連接,,根據(jù)正棱柱的結(jié)構(gòu)性質(zhì),得出//,則即為異面直線與所成角,求出,即可得出結(jié)果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設(shè),則,,,則,∴.故選:C.【點睛】本題考查通過幾何法求異面直線的夾角,考查計算能力.10、B【解析】
求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號零點.由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.11、B【解析】
根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【詳解】由題意得點與原點間的距離.①當(dāng)時,,∴,∴.②當(dāng)時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數(shù)的定義求一個角的三角函數(shù)值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標(biāo)x,縱坐標(biāo)y,該點到原點的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.12、C【解析】
根據(jù)集合的并集、補集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點睛】本題考查的是集合并集,補集的概念,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè),則,由題意可得故當(dāng)時,由不等式,可得,或求得,或故答案為(14、【解析】
由,則,所以點,因為,可得,點坐標(biāo)化簡為,代入雙曲線的方程求解.【詳解】設(shè),則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點睛】本題主要考查了直線與雙曲線的位置關(guān)系,及三角恒等變換,還考查了運算求解的能力和數(shù)形結(jié)合的思想,屬于中檔題.15、【解析】
設(shè)雙曲線的左焦點為,連接,由于.所以四邊形為矩形,故,由雙曲線定義可得,再求的值域即可.【詳解】如圖,設(shè)雙曲線的左焦點為,連接,由于.所以四邊形為矩形,故.在中,由雙曲線的定義可得,.故答案為:【點睛】本題考查雙曲線定義及其性質(zhì),涉及到求余弦型函數(shù)的值域,考查學(xué)生的運算能力,是一道中檔題.16、【解析】
出場運動員編號相同的事件顯然有3種,計算出總的基本事件數(shù),由古典概型概率計算公式求得答案.【詳解】甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,出場的兩名運動員編號相同的事件數(shù)為3,出現(xiàn)的基本事件總數(shù),則出場的兩名運動員編號相同的概率為.故答案為:【點睛】本題考查求古典概率的概率問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】
(1)利用導(dǎo)數(shù)的幾何意義求解即可;(2)利用導(dǎo)數(shù)得出的單調(diào)性以及極值,從而得出的圖象,將函數(shù)的零點問題轉(zhuǎn)化為函數(shù)圖象的交點問題,由圖,即可得出實數(shù)的取值范圍.【詳解】(1)當(dāng)時,,∴切線斜率,又切點∴切線方程為,即.(2),記,令得;∴的情況如下表:2+0單調(diào)遞增極大值單調(diào)遞減當(dāng)時,取極大值又時,;時,若沒有零點,即的圖像與直線無公共點,由圖像知的取值范圍是.【點睛】本題主要考查了導(dǎo)數(shù)的幾何意義的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的零點問題,屬于中檔題.18、(1)2;(2).【解析】
(1)化簡得,所以,展開后利用基本不等式求最小值即可;(2)由(1),原不等式可轉(zhuǎn)化為,討論去絕對值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當(dāng)且僅當(dāng)且即時,.(2)由(1)知,,對任意,都有,∴,即.①當(dāng)時,有,解得;②當(dāng),時,有,解得;③當(dāng)時,有,解得;綜上,,∴實數(shù)的取值范圍是.【點睛】本題主要考查基本不等式的運用和求解含絕對值的不等式,考查學(xué)生的分類思想和計算能力,屬于中檔題.19、(1),(2)【解析】
試題分析:利用將極坐標(biāo)方程化為直角坐標(biāo)方程:化簡為ρcosθ+ρsinθ=1,即為x+y=1.再利用點到直線距離公式得:設(shè)點P的坐標(biāo)為(2cosα,sinα),得P到直線l的距離試題解析:解:化簡為ρcosθ+ρsinθ=1,則直線l的直角坐標(biāo)方程為x+y=1.設(shè)點P的坐標(biāo)為(2cosα,sinα),得P到直線l的距離,dmax=.考點:極坐標(biāo)方程化為直角坐標(biāo)方程,點到直線距離公式20、(1)的長為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,設(shè),根據(jù)向量垂直關(guān)系計算得到答案.(2)計算平面的法向量為,為平面的一個法向量,再計算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,所以.,因為,所以,即,解得,所以的長為4.(2)因為,所以,又,故.設(shè)為平面的法向量,則即取,解得,所以為平面的一個法向量.顯然,為平面的一個法向量,則,據(jù)圖可知,二面角的余弦值為.【點睛】本題考查了立體幾何中的線段長度,二面角,意在考查學(xué)生的計算能力和空間想象能力.21、(1)(2)【解析】
(1)根據(jù)三角形面積公式和正弦定理可得答案;(2)根據(jù)兩角余弦公式可得,即可求出,再根據(jù)正弦定理可得,根據(jù)余弦定理即可求出,問題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經(jīng)檢驗符合題意,三角形的周長.(實際上可解得,符合三邊關(guān)系).【點睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導(dǎo)公式,考查正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了學(xué)生的運算能力,考查了轉(zhuǎn)化思想,屬于中檔題.22、(1).(2).【解析】
(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國嬰兒床市場前景規(guī)模及發(fā)展趨勢分析報告
- 2024年港口起重機采購與租賃合同3篇
- 2024年塔吊租賃合同及操作培訓(xùn)服務(wù)3篇
- 茂名職業(yè)技術(shù)學(xué)院《刑法2》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度物業(yè)服務(wù)合同履行監(jiān)督與違約責(zé)任追究研究3篇
- 2024年標(biāo)準(zhǔn)離婚合同樣本圖片直接下載版B版
- 2024年版測繪服務(wù)委托書2篇
- 2024年歌手經(jīng)紀(jì)公司合約3篇
- 2025年蘭州貨運從業(yè)資格證考試試題和答案
- 2025公對公借款合同范本
- 《物流系統(tǒng)規(guī)劃與設(shè)計》課程教學(xué)大綱
- 護理質(zhì)控分析整改措施(共5篇)
- 金屬礦山安全教育課件
- 托盤演示教學(xué)課件
- 中華農(nóng)耕文化及現(xiàn)實意義
- DB32T 4353-2022 房屋建筑和市政基礎(chǔ)設(shè)施工程檔案資料管理規(guī)程
- DBJ61-T 112-2021 高延性混凝土應(yīng)用技術(shù)規(guī)程-(高清版)
- 2023年高考數(shù)學(xué)求定義域?qū)n}練習(xí)(附答案)
- 農(nóng)產(chǎn)品品牌與營銷課件
- 蘇科版一年級心理健康教育第17節(jié)《生命更美好》教案(定稿)
- 車輛二級維護檢測單參考模板范本
評論
0/150
提交評論