版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省宜春巿高安中學(xué)2025屆高三第二次調(diào)研數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.水平放置的,用斜二測(cè)畫(huà)法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.3.已知定義在上的偶函數(shù)滿(mǎn)足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為()A. B.C. D.4.已知正四面體的棱長(zhǎng)為,是該正四面體外接球球心,且,,則()A. B.C. D.5.已知復(fù)數(shù),,則()A. B. C. D.6.已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.37.已知雙曲線(,)的左、右頂點(diǎn)分別為,,虛軸的兩個(gè)端點(diǎn)分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.8.在中,為中點(diǎn),且,若,則()A. B. C. D.9.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,它的終邊過(guò)點(diǎn),則的值為()A. B. C. D.10.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.11.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.12.已知點(diǎn)是雙曲線上一點(diǎn),若點(diǎn)到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差________,通項(xiàng)公式________.14.已知雙曲線的左焦點(diǎn)為,、為雙曲線上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),的中點(diǎn)為,的中點(diǎn)為,的中點(diǎn)為,若,且直線的斜率為,則__________,雙曲線的離心率為_(kāi)_________.15.已知點(diǎn)是雙曲線漸近線上的一點(diǎn),則雙曲線的離心率為_(kāi)______16.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在,角、、所對(duì)的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程是(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程;(2)在曲線上取一點(diǎn),直線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),交曲線于點(diǎn),求的最大值.19.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點(diǎn).(1)求證:直線MN⊥平面ACB1;(2)求點(diǎn)C1到平面B1MC的距離.20.(12分)設(shè)點(diǎn),分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為1.(1)求橢圓的方程;(2)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn),是直線上的兩點(diǎn),且,,求四邊形面積的最大值.21.(12分)為了加強(qiáng)環(huán)保知識(shí)的宣傳,某學(xué)校組織了垃圾分類(lèi)知識(shí)竟賽活動(dòng).活動(dòng)設(shè)置了四個(gè)箱子,分別寫(xiě)有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫(xiě)有一種垃圾的名稱(chēng).每位參賽選手從所有卡片中隨機(jī)抽取張,按照自己的判斷將每張卡片放入對(duì)應(yīng)的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯(cuò)誤得分.比如將寫(xiě)有“廢電池”的卡片放入寫(xiě)有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機(jī)抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);(2)從所抽取的人中得分落在組的選手中隨機(jī)選取名選手,以表示這名選手中得分不超過(guò)分的人數(shù),求的分布列和數(shù)學(xué)期望.22.(10分)已知函數(shù).(1)若曲線在處的切線為,試求實(shí)數(shù),的值;(2)當(dāng)時(shí),若有兩個(gè)極值點(diǎn),,且,,若不等式恒成立,試求實(shí)數(shù)m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)題意,對(duì)于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個(gè)式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當(dāng),若為增函數(shù),則①,
當(dāng),若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).2、B【解析】
根據(jù)斜二測(cè)畫(huà)法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個(gè)相同圓錐的組合體,圓錐的側(cè)面展開(kāi)圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測(cè)畫(huà)法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個(gè)相同圓錐的組合體,它的表面積為.故選:【點(diǎn)睛】本題考查斜二測(cè)畫(huà)法的應(yīng)用及組合體的表面積求法,難度較易.3、C【解析】
可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對(duì)數(shù)的運(yùn)算得到、、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因?yàn)?,即,又,設(shè),根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【點(diǎn)睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個(gè)函數(shù)單調(diào)性的方法和過(guò)程:設(shè),通過(guò)條件比較與,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.4、A【解析】
如圖設(shè)平面,球心在上,根據(jù)正四面體的性質(zhì)可得,根據(jù)平面向量的加法的幾何意義,重心的性質(zhì),結(jié)合已知求出的值.【詳解】如圖設(shè)平面,球心在上,由正四面體的性質(zhì)可得:三角形是正三角形,,,在直角三角形中,,,,,,因?yàn)闉橹匦模虼?,則,因此,因此,則,故選A.【點(diǎn)睛】本題考查了正四面體的性質(zhì),考查了平面向量加法的幾何意義,考查了重心的性質(zhì),屬于中檔題.5、B【解析】分析:利用的恒等式,將分子、分母同時(shí)乘以,化簡(jiǎn)整理得詳解:,故選B點(diǎn)睛:復(fù)數(shù)問(wèn)題是高考數(shù)學(xué)中的??紗?wèn)題,屬于得分題,主要考查的方面有:復(fù)數(shù)的分類(lèi)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運(yùn)算,在運(yùn)算時(shí)注意符號(hào)的正、負(fù)問(wèn)題.6、A【解析】
由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ).7、D【解析】
根據(jù)題意畫(huà)出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫(huà)出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故焦距的最小值為.故選:D【點(diǎn)睛】本題考查了雙曲線的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.8、B【解析】
選取向量,為基底,由向量線性運(yùn)算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,平面向量基本定理,屬于基礎(chǔ)題.9、B【解析】
根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過(guò)點(diǎn),∴,.∴.故選:.【點(diǎn)睛】本題考查了三角函數(shù)定義,和差公式,意在考查學(xué)生的計(jì)算能力.10、D【解析】
利用輔助角公式,化簡(jiǎn)函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因?yàn)?,由,解得,即函?shù)的增區(qū)間為,所以當(dāng)時(shí),增區(qū)間的一個(gè)子集為.故選D.【點(diǎn)睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點(diǎn)在于把握正弦函數(shù)的單調(diào)性,同時(shí)對(duì)于整體法的應(yīng)用,使問(wèn)題化繁為簡(jiǎn),難度較易.11、C【解析】根據(jù)命題的否定,可以寫(xiě)出:,所以選C.12、A【解析】
設(shè)點(diǎn)的坐標(biāo)為,代入橢圓方程可得,然后分別求出點(diǎn)到兩條漸近線的距離,由距離之積為,并結(jié)合,可得到的齊次方程,進(jìn)而可求出離心率的值.【詳解】設(shè)點(diǎn)的坐標(biāo)為,有,得.雙曲線的兩條漸近線方程為和,則點(diǎn)到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率,構(gòu)造的齊次方程是解決本題的關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
直接利用等差數(shù)列公式計(jì)算得到答案.【詳解】,,解得,,故.故答案為:2;.【點(diǎn)睛】本題考查了等差數(shù)列的基本計(jì)算,意在考查學(xué)生的計(jì)算能力.14、【解析】
設(shè),,根據(jù)中點(diǎn)坐標(biāo)公式可得坐標(biāo),利用可得到點(diǎn)坐標(biāo)所滿(mǎn)足的方程,結(jié)合直線斜率可求得,進(jìn)而求得;將點(diǎn)坐標(biāo)代入雙曲線方程,結(jié)合焦點(diǎn)坐標(biāo)可求得,進(jìn)而得到離心率.【詳解】左焦點(diǎn)為,雙曲線的半焦距.設(shè),,,,,,即,,即,又直線斜率為,即,,,,在雙曲線上,,即,結(jié)合可解得:,,離心率.故答案為:;.【點(diǎn)睛】本題考查直線與雙曲線的綜合應(yīng)用問(wèn)題,涉及到直線截雙曲線所得線段長(zhǎng)度的求解、雙曲線離心率的求解問(wèn)題;關(guān)鍵是能夠通過(guò)設(shè)點(diǎn)的方式,結(jié)合直線斜率、垂直關(guān)系、點(diǎn)在雙曲線上來(lái)構(gòu)造方程組求得所需變量的值.15、【解析】
先表示出漸近線,再代入點(diǎn),求出,則離心率易求.【詳解】解:的漸近線是因?yàn)樵跐u近線上,所以,故答案為:【點(diǎn)睛】考查雙曲線的離心率的求法,是基礎(chǔ)題.16、【解析】
利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)的性質(zhì),化簡(jiǎn)求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式以及等比中項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)答案不唯一,見(jiàn)解析【解析】
(1)由題意根據(jù)和差角的三角函數(shù)公式可得,再根據(jù)同角三角函數(shù)基本關(guān)系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【詳解】解:(1)在中,因?yàn)椋忠阎?,所以,因?yàn)?,所以,于?所以.(2)在中,由余弦定理得,得解得或,當(dāng)時(shí),的面積,當(dāng)時(shí),的面積.【點(diǎn)睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類(lèi)討論思想,屬于中檔題.18、(1)(2)最大值為【解析】
(1)利用消去參數(shù),求得曲線的普通方程,再轉(zhuǎn)化為極坐標(biāo)方程.(2)設(shè)出兩點(diǎn)的坐標(biāo),求得的表達(dá)式,并利用三角恒等變換進(jìn)行化簡(jiǎn),再結(jié)合三角函數(shù)最值的求法,求得的最大值.【詳解】(1)由消去得曲線的普通方程為.所以的極坐標(biāo)方程為,即.(2)不妨設(shè),,,,,則當(dāng)時(shí),取得最大值,最大值為.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,普通方程化為極坐標(biāo)方程,考查極坐標(biāo)系下線段長(zhǎng)度的乘積的最值的求法,考查三角恒等變換,考查三角函數(shù)最值的求法,屬于中檔題.19、(1)證明見(jiàn)解析.(2)【解析】
(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點(diǎn),通過(guò)等體積法,設(shè)C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點(diǎn);∵M(jìn)是AB的中點(diǎn).所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點(diǎn),設(shè)C1到平面B1CM的距離為h,因?yàn)镸P,所以?MP,因?yàn)镃M,B1C;B1M,所以所以:CM?B1M.因?yàn)?,所以,解得所以點(diǎn),到平面的距離為【點(diǎn)睛】本題主要考查面面垂直的證明以及點(diǎn)到平面的距離,一般證明面面垂直都用線面垂直轉(zhuǎn)化為面面垂直,而點(diǎn)到面的距離常用體積轉(zhuǎn)化來(lái)求,屬于中檔題20、(1);(2)2.【解析】
(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關(guān)于的一元二次方程,由直線與橢圓僅有一個(gè)公共點(diǎn)知,即可得到,的關(guān)系式,利用點(diǎn)到直線的距離公式即可得到,.當(dāng)時(shí),設(shè)直線的傾斜角為,則,即可得到四邊形面積的表達(dá)式,利用基本不等式的性質(zhì),結(jié)合當(dāng)時(shí),四邊形是矩形,即可得出的最大值.【詳解】(1)設(shè),則,,,,由題意得,,橢圓的方程為;
(2)將直線的方程代入橢圓的方程中,得.
由直線與橢圓僅有一個(gè)公共點(diǎn)知,,化簡(jiǎn)得:.
設(shè),,當(dāng)時(shí),設(shè)直線的傾斜角為,則,,,,∴當(dāng)時(shí),,,.當(dāng)時(shí),四邊形是矩形,.
所以四邊形面積的最大值為2.【點(diǎn)睛】本題主要考查橢圓的方程與性質(zhì)、直線方程、直線與橢圓的位置關(guān)系、向量知識(shí)、二次函數(shù)的單調(diào)性、基本不等式的性質(zhì)等基礎(chǔ)知識(shí)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度中介機(jī)構(gòu)合作:加盟合同協(xié)議格式6篇
- 2024年度第三章國(guó)際服務(wù)貿(mào)易政策執(zhí)行方案3篇
- 2025版新教材高考政治復(fù)習(xí)特訓(xùn)卷階段滾動(dòng)復(fù)習(xí)提升卷三必修一+必修二
- 2024年森林守護(hù)者職責(zé)與權(quán)益合同版
- 2025版高考地理第一部分微專(zhuān)題小練習(xí)專(zhuān)練52產(chǎn)業(yè)轉(zhuǎn)移
- 2025版高考數(shù)學(xué)一輪總復(fù)習(xí)應(yīng)用創(chuàng)新題組6.4數(shù)列求和數(shù)列的綜合應(yīng)用
- 隴東學(xué)院《古生物地史學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度天津公交集團(tuán)車(chē)輛維修服務(wù)合同3篇
- 2024年汽車(chē)維修技師培訓(xùn)與考核合同規(guī)范3篇
- 2023七年級(jí)數(shù)學(xué)下冊(cè) 第八章 二元一次方程組8.3 實(shí)際問(wèn)題與二元一次方程組第2課時(shí) 實(shí)際問(wèn)題與二元一次方程組(2)教學(xué)實(shí)錄 (新版)新人教版
- 中國(guó)當(dāng)前的民族問(wèn)題
- 陜西省建筑防火設(shè)計(jì)、審查、驗(yàn)收疑難問(wèn)題技術(shù)指南-ppt
- 海警法智慧樹(shù)知到答案章節(jié)測(cè)試2023年大連海洋大學(xué)
- 手機(jī)號(hào)碼段歸屬地?cái)?shù)據(jù)庫(kù)(2016年3月)
- 《借貸記賬法》教學(xué)設(shè)計(jì)
- 【試題】人教版二年級(jí)下數(shù)學(xué)暑假每日一練
- 衛(wèi)生院關(guān)于開(kāi)展?jié)M意度調(diào)查工作的實(shí)施方案
- 紡織材料學(xué)選擇題
- YY/T 0916.1-2021醫(yī)用液體和氣體用小孔徑連接件第1部分:通用要求
- 醫(yī)務(wù)科工作思路(計(jì)劃)6篇
- GB/T 13912-2020金屬覆蓋層鋼鐵制件熱浸鍍鋅層技術(shù)要求及試驗(yàn)方法
評(píng)論
0/150
提交評(píng)論