版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
齊齊哈爾市重點(diǎn)中學(xué)2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若表示不超過(guò)的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.82.已知復(fù)數(shù)z1=3+4i,z2=a+i,且z1是實(shí)數(shù),則實(shí)數(shù)a等于()A. B. C.- D.-3.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.4.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.176.洛書,古稱龜書,是陰陽(yáng)五行術(shù)數(shù)之源,在古代傳說(shuō)中有神龜出于洛水,其甲殼上心有此圖象,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽(yáng)數(shù),四角黑點(diǎn)為陰數(shù).如圖,若從四個(gè)陰數(shù)和五個(gè)陽(yáng)數(shù)中分別隨機(jī)選取1個(gè)數(shù),則其和等于11的概率是().A. B. C. D.7.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.8.已知x,y滿足不等式組,則點(diǎn)所在區(qū)域的面積是()A.1 B.2 C. D.9.在我國(guó)傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個(gè)物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個(gè),這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.810.已知△ABC中,.點(diǎn)P為BC邊上的動(dòng)點(diǎn),則的最小值為()A.2 B. C. D.11.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.12.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽(yù)為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實(shí)驗(yàn)表明,該藥物釋放量與時(shí)間的函數(shù)關(guān)系為(如圖所示),實(shí)驗(yàn)表明,當(dāng)藥物釋放量對(duì)人體無(wú)害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對(duì)房間進(jìn)行消毒,則在消毒后至少經(jīng)過(guò)______分鐘人方可進(jìn)入房間.14.已知的展開式中含有的項(xiàng)的系數(shù)是,則展開式中各項(xiàng)系數(shù)和為______.15.設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,,若對(duì)任意都有成立,則的值為__________.16.(5分)已知為實(shí)數(shù),向量,,且,則____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知點(diǎn),直線與拋物線交于不同兩點(diǎn)、,直線、與拋物線的另一交點(diǎn)分別為兩點(diǎn)、,連接,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn),連接、.(1)證明:;(2)若的面積,求的取值范圍.18.(12分)如圖,湖中有一個(gè)半徑為千米的圓形小島,岸邊點(diǎn)與小島圓心相距千米,為方便游人到小島觀光,從點(diǎn)向小島建三段棧道,,,湖面上的點(diǎn)在線段上,且,均與圓相切,切點(diǎn)分別為,,其中棧道,,和小島在同一個(gè)平面上.沿圓的優(yōu)弧(圓上實(shí)線部分)上再修建棧道.記為.用表示棧道的總長(zhǎng)度,并確定的取值范圍;求當(dāng)為何值時(shí),棧道總長(zhǎng)度最短.19.(12分)設(shè)點(diǎn)分別是橢圓的左,右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點(diǎn),過(guò)點(diǎn)且斜率的直線與橢圓交于兩點(diǎn),為線段的中點(diǎn),直線交直線于點(diǎn),證明:直線.20.(12分)如圖,在四棱錐中,底面,,,,為的中點(diǎn),是上的點(diǎn).(1)若平面,證明:平面.(2)求二面角的余弦值.21.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點(diǎn).(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.22.(10分)已知函數(shù).(1)若是函數(shù)的極值點(diǎn),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
求出,,,,,,判斷出是一個(gè)以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個(gè)以周期為6的周期數(shù)列,則.故選:B.【點(diǎn)睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應(yīng)用.2、A【解析】分析:計(jì)算,由z1,是實(shí)數(shù)得,從而得解.詳解:復(fù)數(shù)z1=3+4i,z2=a+i,.所以z1,是實(shí)數(shù),所以,即.故選A.點(diǎn)睛:本題主要考查了復(fù)數(shù)共軛的概念,屬于基礎(chǔ)題.3、A【解析】
模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運(yùn)行過(guò)程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點(diǎn)睛】該題考查的是有關(guān)程序框圖的問(wèn)題,涉及到的知識(shí)點(diǎn)有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.4、C【解析】
化簡(jiǎn)復(fù)數(shù)為、的形式,可以確定對(duì)應(yīng)的點(diǎn)位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對(duì)應(yīng)的坐標(biāo)為位于第三象限故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.5、C【解析】
首先根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗(yàn)證即可;【詳解】解:∵,∴當(dāng)時(shí),滿足,∴實(shí)數(shù)可以為8.故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.6、A【解析】
基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個(gè),由此能求出其和等于11的概率.【詳解】解:從四個(gè)陰數(shù)和五個(gè)陽(yáng)數(shù)中分別隨機(jī)選取1個(gè)數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個(gè),其和等于的概率.故選:.【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.7、B【解析】
由三視圖判斷出原圖,將幾何體補(bǔ)形為長(zhǎng)方體,由此計(jì)算出幾何體外接球的直徑,進(jìn)而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個(gè)底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長(zhǎng)為2且與底面垂直,因?yàn)橹比庵梢詮?fù)原成一個(gè)長(zhǎng)方體,該長(zhǎng)方體外接球就是該三棱柱的外接球,長(zhǎng)方體對(duì)角線就是外接球直徑,則,那么.故選:B【點(diǎn)睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計(jì)算,屬于基礎(chǔ)題.8、C【解析】
畫出不等式表示的平面區(qū)域,計(jì)算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點(diǎn)睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運(yùn)算能力,屬于??碱}.9、B【解析】
利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】從五行中任取兩個(gè),所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點(diǎn)睛】本小題主要考查古典概型的計(jì)算,屬于基礎(chǔ)題.10、D【解析】
以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,可得,設(shè),運(yùn)用向量的坐標(biāo)表示,求得點(diǎn)A的軌跡,進(jìn)而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時(shí),的最小值為.故選D.【點(diǎn)睛】本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運(yùn)算能力,屬于中檔題.11、B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點(diǎn)睛:本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.12、A【解析】
計(jì)算,得到答案.【詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的計(jì)算,意在考查學(xué)生的計(jì)算能力和理解能力.二、填空題:本題共4小題,每小題5分,共20分。13、240【解析】
(1)由時(shí),,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當(dāng)時(shí),,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對(duì)房間進(jìn)行消毒,則在消毒后至少經(jīng)過(guò)分鐘人方可進(jìn)入房間.故答案為:(1)2;(2)40【點(diǎn)睛】本題主要考查了分段函數(shù)的應(yīng)用,屬于中檔題.14、1【解析】
由二項(xiàng)式定理及展開式通項(xiàng)公式得:,解得,令得:展開式中各項(xiàng)系數(shù)和,得解.【詳解】解:由的展開式的通項(xiàng),令,得含有的項(xiàng)的系數(shù)是,解得,令得:展開式中各項(xiàng)系數(shù)和為,故答案為:1.【點(diǎn)睛】本題考查了二項(xiàng)式定理及展開式通項(xiàng)公式,屬于中檔題.15、【解析】
由已知條件得出關(guān)于首項(xiàng)和公差的方程組,解出這兩個(gè)量,計(jì)算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對(duì)應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時(shí),取得最大值,對(duì)任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和最值的計(jì)算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計(jì)算能力,屬于中等題.16、5【解析】
由,,且,得,解得,則,則.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見解析;(2).【解析】
(1)設(shè)點(diǎn)、,求出直線、的方程,與拋物線的方程聯(lián)立,求出點(diǎn)、的坐標(biāo),利用直線、的斜率相等證明出;(2)設(shè)點(diǎn)到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長(zhǎng)公式計(jì)算出,即可得出關(guān)于的表達(dá)式,結(jié)合不等式可解出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè)點(diǎn)、,則,直線的方程為:,由,消去并整理得,由韋達(dá)定理可知,,,代入直線的方程,得,解得,同理,可得,,,,代入得,因此,;(2)設(shè)點(diǎn)到直線、的距離分別為、,則,由(1)知,,,,,,同理,得,,由,整理得,由韋達(dá)定理得,,,得,設(shè)點(diǎn)到直線的高為,則,,,,解得,因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查直線與直線平行的證明,考查實(shí)數(shù)的取值范圍的求法,考查拋物線、直線方程、韋達(dá)定理、弦長(zhǎng)公式、直線的斜率等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是難題.18、,;當(dāng)時(shí),棧道總長(zhǎng)度最短.【解析】
連,,由切線長(zhǎng)定理知:,,,,即,,則,,進(jìn)而確定的取值范圍;根據(jù)求導(dǎo)得,利用增減性算出,進(jìn)而求得取值.【詳解】解:連,,由切線長(zhǎng)定理知:,,,又,,故,則劣弧的長(zhǎng)為,因此,優(yōu)弧的長(zhǎng)為,又,故,,即,,所以,,,則;,,其中,,-0+單調(diào)遞減極小值單調(diào)遞增故時(shí),所以當(dāng)時(shí),棧道總長(zhǎng)度最短.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于中檔題.19、(1)(2)見解析【解析】
(1)設(shè),求出后由二次函數(shù)知識(shí)得最小值,從而得,即得橢圓方程;(2)設(shè)直線的方程為,代入橢圓方程整理,設(shè),由韋達(dá)定理得,設(shè),利用三點(diǎn)共線,求得,然后驗(yàn)證即可.【詳解】解:(1)設(shè),則,所以,因?yàn)椋援?dāng)時(shí),值最小,所以,解得,(舍負(fù))所以,所以橢圓的方程為,(2)設(shè)直線的方程為,聯(lián)立,得.設(shè),則,設(shè),因?yàn)槿c(diǎn)共線,又所以,解得.而所以直線軸,即.【點(diǎn)睛】本題考查求橢圓方程,考查直線與橢圓相交問(wèn)題.直線與橢圓相交問(wèn)題,采取設(shè)而不求思想,設(shè),設(shè)直線方程,應(yīng)用韋達(dá)定理,得出,再代入題中需要計(jì)算可證明的式子參與化簡(jiǎn)變形.20、(1)證明見解析(2)【解析】
(1)因?yàn)?,利用線面平行的判定定理可證出平面,利用點(diǎn)線面的位置關(guān)系,得出和,由于底面,利用線面垂直的性質(zhì),得出,且,最后結(jié)合線面垂直的判定定理得出平面,即可證出平面.(2)由(1)可知,,兩兩垂直,建立空間直角坐標(biāo)系,標(biāo)出點(diǎn)坐標(biāo),運(yùn)用空間向量坐標(biāo)運(yùn)算求出所需向量,分別求出平面和平面的法向量,最后利用空間二面角公式,即可求出的余弦值.【詳解】(1)證明:因?yàn)?,平面,平面,所以平面,因?yàn)槠矫?,平面,所以可設(shè)平面平面,又因?yàn)槠矫?,所?因?yàn)槠矫妫矫?,所以,從而?因?yàn)榈酌妫?因?yàn)?,所?因?yàn)?,所以平?綜上,平面.(2)解:由(1)可得,,兩兩垂直,以為原點(diǎn),,,所在直線分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.因?yàn)?,所以,則,,,,所以,,,.設(shè)是平面的法向量,由取取,得.設(shè)是平面的法向量,由得取,得,所以,即的余弦值為.【點(diǎn)睛】本題考查線面垂直的判定和空間二面角的計(jì)算,還運(yùn)用線面平行的性質(zhì)、線面垂直的判定定理、點(diǎn)線面的位置關(guān)系、空間向量的坐標(biāo)運(yùn)算等,同時(shí)考查學(xué)生的空間想象能力和邏輯推理能力.21、(1)見解析;(2).【解析】試題分析:(1)根據(jù)平面有,利用勾股定理可證明,故平面,再由面面垂直的判定定理可證得結(jié)論;(2)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年巴音郭楞年貨運(yùn)從業(yè)資格證
- 2025年池州貨車上崗證理論模擬考試題庫(kù)
- 2024年度醫(yī)院陪護(hù)人員雇傭合同3篇
- 2025廢料買賣交易合同
- 2024年信用卡借款條款3篇
- 2024年度金融投資生意合作合同協(xié)議3篇
- 2025建設(shè)工程施工承包合同農(nóng)村飲水安全工程施工承包合同
- 2024年二次抵押借款房產(chǎn)合同3篇
- 2024年標(biāo)準(zhǔn)型吊車買賣合同
- 煙草企業(yè)煙草浸泡液水質(zhì)維護(hù)條例
- 財(cái)務(wù)內(nèi)部員工培訓(xùn)課件
- 《管理學(xué)原理》課程期末考試復(fù)習(xí)題庫(kù)(含答案)
- 2024年中國(guó)彈載計(jì)算機(jī)市場(chǎng)調(diào)查研究報(bào)告
- 2024年全新初二化學(xué)上冊(cè)期末試卷及答案(人教版)
- AI賦能企業(yè)新未來(lái)-探索智能化技術(shù)在企業(yè)中的應(yīng)用
- 湖北工業(yè)大學(xué)《數(shù)字邏輯》2021-2022學(xué)年期末試卷
- 安全生產(chǎn)工作安排部署范文五篇
- 2023-2024學(xué)年湖北省武漢市洪山區(qū)九年級(jí)(上)期末物理試卷(含答案)
- 四年級(jí)英語(yǔ)上冊(cè) 【期末詞匯】 期末詞匯專項(xiàng)檢測(cè)卷(一)(含答案)(人教PEP)
- 心理健康教育(共35張課件)
- 2024年直播銷售員(五級(jí))職業(yè)鑒定(重點(diǎn))備考試題庫(kù)300題(附答案)
評(píng)論
0/150
提交評(píng)論