中山市重點(diǎn)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁
中山市重點(diǎn)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁
中山市重點(diǎn)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁
中山市重點(diǎn)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁
中山市重點(diǎn)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中山市重點(diǎn)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.42.復(fù)數(shù)的模為().A. B.1 C.2 D.3.已知是兩條不重合的直線,是兩個(gè)不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則4.金庸先生的武俠小說《射雕英雄傳》第12回中有這樣一段情節(jié),“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數(shù)為()A.20 B.24 C.25 D.265.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡(jiǎn)單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.6.已知函數(shù),,若對(duì)任意的,存在實(shí)數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.57.已知全集,函數(shù)的定義域?yàn)椋?,則下列結(jié)論正確的是A. B.C. D.8.已知函數(shù),當(dāng)時(shí),恒成立,則的取值范圍為()A. B. C. D.9.已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.五名志愿者到三個(gè)不同的單位去進(jìn)行幫扶,每個(gè)單位至少一人,則甲、乙兩人不在同一個(gè)單位的概率為()A. B. C. D.12.已知函數(shù)在區(qū)間上恰有四個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)有且只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為__________.14.若實(shí)數(shù),滿足不等式組,則的最小值為______.15.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個(gè)零點(diǎn),則的取值范圍是__________.16.在四面體中,分別是的中點(diǎn).則下述結(jié)論:①四面體的體積為;②異面直線所成角的正弦值為;③四面體外接球的表面積為;④若用一個(gè)與直線垂直,且與四面體的每個(gè)面都相交的平面去截該四面體,由此得到一個(gè)多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫所有正確結(jié)論的編號(hào))三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)直線與拋物線交于兩點(diǎn),與橢圓交于兩點(diǎn),設(shè)直線(為坐標(biāo)原點(diǎn))的斜率分別為,若.(1)證明:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)是否存在常數(shù),滿足?并說明理由.18.(12分)△ABC的內(nèi)角的對(duì)邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長(zhǎng).19.(12分)設(shè)為實(shí)數(shù),在極坐標(biāo)系中,已知圓()與直線相切,求的值.20.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設(shè)二面角的大小為,求的值.21.(12分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對(duì)于函數(shù)的圖象上兩點(diǎn),存在,使得函數(shù)的圖象在處的切線.求證:.22.(10分)設(shè)數(shù)陣,其中、、、.設(shè),其中,且.定義變換為“對(duì)于數(shù)陣的每一行,若其中有或,則將這一行中每個(gè)數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過變換得到,再將經(jīng)過變換得到、,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個(gè)數(shù)的和為.(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,,求的值;(3)對(duì)任意確定的一個(gè)數(shù)陣,證明:的所有可能取值的和不超過.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,由柱體、椎體的體積公式進(jìn)一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,如圖所示:故:.故選:C.【點(diǎn)睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.2、D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式求解.【詳解】解:,復(fù)數(shù)的模為.故選:D.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.3、B【解析】

根據(jù)空間中線線、線面位置關(guān)系,逐項(xiàng)判斷即可得出結(jié)果.【詳解】A選項(xiàng),若,,,,則或與相交;故A錯(cuò);B選項(xiàng),若,,則,又,是兩個(gè)不重合的平面,則,故B正確;C選項(xiàng),若,,則或或與相交,又,是兩個(gè)不重合的平面,則或與相交;故C錯(cuò);D選項(xiàng),若,,則或或與相交,又,是兩個(gè)不重合的平面,則或與相交;故D錯(cuò);故選B【點(diǎn)睛】本題主要考查與線面、線線相關(guān)的命題,熟記線線、線面位置關(guān)系,即可求解,屬于??碱}型.4、D【解析】

利用組合的意義可得混合后所有不同的滋味種數(shù)為,再利用組合數(shù)的計(jì)算公式可得所求的種數(shù).【詳解】混合后可以組成的所有不同的滋味種數(shù)為(種),故選:D.【點(diǎn)睛】本題考查組合的應(yīng)用,此類問題注意實(shí)際問題的合理轉(zhuǎn)化,本題屬于容易題.5、C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.6、A【解析】

根據(jù)條件將問題轉(zhuǎn)化為,對(duì)于恒成立,然后構(gòu)造函數(shù),然后求出的范圍,進(jìn)一步得到的最大值.【詳解】,,對(duì)任意的,存在實(shí)數(shù)滿足,使得,易得,即恒成立,,對(duì)于恒成立,設(shè),則,令,在恒成立,,故存在,使得,即,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.,將代入得:,,且,故選:A【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,零點(diǎn)存在定理和不等式恒成立問題,考查了轉(zhuǎn)化思想,屬于難題.7、A【解析】

求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點(diǎn)睛】本題考查集合的運(yùn)算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時(shí)要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點(diǎn)集,都由代表元決定.8、A【解析】

分析可得,顯然在上恒成立,只需討論時(shí)的情況即可,,然后構(gòu)造函數(shù),結(jié)合的單調(diào)性,不等式等價(jià)于,進(jìn)而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當(dāng)時(shí),等價(jià)于,因?yàn)?所以.設(shè),由,顯然在上單調(diào)遞增,因?yàn)?所以等價(jià)于,即,則.設(shè),則.令,解得,易得在上單調(diào)遞增,在上單調(diào)遞減,從而,故.故選:A.【點(diǎn)睛】本題考查了不等式恒成立問題,利用函數(shù)單調(diào)性是解決本題的關(guān)鍵,考查了學(xué)生的推理能力,屬于基礎(chǔ)題.9、B【解析】

分別比較復(fù)數(shù)的實(shí)部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限.【詳解】因?yàn)闀r(shí),所以,,所以復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.10、C【解析】

化簡(jiǎn)復(fù)數(shù)為、的形式,可以確定對(duì)應(yīng)的點(diǎn)位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對(duì)應(yīng)的坐標(biāo)為位于第三象限故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.11、D【解析】

三個(gè)單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個(gè)單位的概率,利用互為對(duì)立事件的概率和為1即可解決.【詳解】由題意,三個(gè)單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個(gè)單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個(gè)單位,共有種,故甲、乙兩人在同一個(gè)單位的概率為,故甲、乙兩人不在同一個(gè)單位的概率為.故選:D.【點(diǎn)睛】本題考查古典概型的概率公式的計(jì)算,涉及到排列與組合的應(yīng)用,在正面情況較多時(shí),可以先求其對(duì)立事件,即甲、乙兩人在同一個(gè)單位的概率,本題有一定難度.12、A【解析】

函數(shù)的零點(diǎn)就是方程的解,設(shè),方程可化為,即或,求出的導(dǎo)數(shù),利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個(gè)數(shù)得出的范圍.【詳解】由題意得有四個(gè)大于的不等實(shí)根,記,則上述方程轉(zhuǎn)化為,即,所以或.因?yàn)?,?dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;所以在處取得最小值,最小值為.因?yàn)椋杂袃蓚€(gè)符合條件的實(shí)數(shù)解,故在區(qū)間上恰有四個(gè)不相等的零點(diǎn),需且.故選:A.【點(diǎn)睛】本題考查復(fù)合函數(shù)的零點(diǎn).考查轉(zhuǎn)化與化歸思想,函數(shù)零點(diǎn)轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學(xué)生分析問題解決問題的能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

當(dāng)時(shí),轉(zhuǎn)化條件得有唯一實(shí)數(shù)根,令,通過求導(dǎo)得到的單調(diào)性后數(shù)形結(jié)合即可得解.【詳解】當(dāng)時(shí),,故不是函數(shù)的零點(diǎn);當(dāng)時(shí),即,令,,,當(dāng)時(shí),;當(dāng)時(shí),,的單調(diào)減區(qū)間為,增區(qū)間為,又,可作出的草圖,如圖:則要使有唯一實(shí)數(shù)根,則.故答案為:.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的應(yīng)用,考查了轉(zhuǎn)化化歸思想和數(shù)形結(jié)合思想,屬于難題.14、5【解析】

根據(jù)題意,畫出圖像,數(shù)形結(jié)合,將目標(biāo)轉(zhuǎn)化為求動(dòng)直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區(qū)域如圖陰影區(qū)域所示,令,則.分析知,當(dāng),時(shí),取得最小值,且.【點(diǎn)睛】本題考查線性規(guī)劃問題,屬于基礎(chǔ)題15、【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個(gè)零點(diǎn),∴方程f(x)?g(x)=0有四個(gè)解,即f(x)+f(2?x)?b=0有四個(gè)解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個(gè)交點(diǎn),,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結(jié)合圖象可知,<b<2,故答案為.點(diǎn)睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時(shí),應(yīng)從內(nèi)到外依次求值.(2)當(dāng)給出函數(shù)值求自變量的值時(shí),先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗(yàn),看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.16、①③④.【解析】

補(bǔ)圖成長(zhǎng)方體,在長(zhǎng)方體中利用割補(bǔ)法求四面體的體積,和外接球的表面積,以及異面直線的夾角,作出截面即可計(jì)算截面面積的最值.【詳解】根據(jù)四面體特征,可以補(bǔ)圖成長(zhǎng)方體設(shè)其邊長(zhǎng)為,,解得補(bǔ)成長(zhǎng),寬,高分別為的長(zhǎng)方體,在長(zhǎng)方體中:①四面體的體積為,故正確②異面直線所成角的正弦值等價(jià)于邊長(zhǎng)為的矩形的對(duì)角線夾角正弦值,可得正弦值為,故錯(cuò);③四面體外接球就是長(zhǎng)方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設(shè)異面直線與所成的角為,則,算得,.故正確.故答案為:①③④.【點(diǎn)睛】此題考查根據(jù)幾何體求體積,外接球的表面積,異面直線夾角和截面面積最值,關(guān)鍵在于熟練掌握點(diǎn)線面位置關(guān)系的處理方法,補(bǔ)圖法作為解決體積和外接球問題的常用方法,平常需要積累常見幾何體的補(bǔ)圖方法.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(0,2);(2)存在,理由見解析【解析】

(1)設(shè)直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(diǎn)(2)由斜率公式分別求出,,聯(lián)立直線與拋物線,橢圓,再由根與系數(shù)的關(guān)系得,,,代入,,化簡(jiǎn)即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點(diǎn),故設(shè)由可得,.,,故所以直線l的方程為故直線l恒過定點(diǎn).(2)由(1)知設(shè)由可得,,即存在常數(shù)滿足題意.【點(diǎn)睛】本題主要考查了直線與拋物線、橢圓的位置關(guān)系,直線過定點(diǎn)問題,考查學(xué)生分析解決問題的能力,屬于中檔題.18、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計(jì)算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長(zhǎng)為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)得,即.由余弦定理得,即,得.故的周長(zhǎng)為.點(diǎn)睛:在處理解三角形問題時(shí),要注意抓住題目所給的條件,當(dāng)題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時(shí)需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問題常見的一種考題是“已知一條邊的長(zhǎng)度和它所對(duì)的角,求面積或周長(zhǎng)的取值范圍”或者“已知一條邊的長(zhǎng)度和它所對(duì)的角,再有另外一個(gè)條件,求面積或周長(zhǎng)的值”,這類問題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.19、【解析】

將圓和直線化成普通方程.再根據(jù)相切,圓心到直線的距離等于半徑,列等式方程,解方程即可.【詳解】解:將圓化成普通方程為,整理得.將直線化成普通方程為.因?yàn)橄嗲?所以圓心到直線的距離等于半徑,即解得.【點(diǎn)睛】本題考查極坐標(biāo)方程與普通方程的互化,考查直線與圓的位置關(guān)系,是基礎(chǔ)題.20、(1)證明見解析;(2).【解析】

(1)要證明平面平面,只需證明平面即可;(2)取的中點(diǎn)D,連接BD,以B為原點(diǎn),以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,分別計(jì)算平面的法向量為與平面的法向量為,利用夾角公式計(jì)算即可.【詳解】(1)在中,,所以,即.因?yàn)椋?,,所?所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,四邊形為菱形,且,則為正三角形,取的中點(diǎn)D,連接BD,則.以B為原點(diǎn),以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,且,.由得取.由四邊形為菱形,得;又平面,所以;又,所以平面,所以平面的法向量為.所以.故.【點(diǎn)睛】本題考查面面垂直的判定定理以及利用向量法求二面角正弦值的問題,在利用向量法時(shí),關(guān)鍵是點(diǎn)的坐標(biāo)要寫準(zhǔn)確,本題是一道中檔題.21、(1)見解析(2)見證明【解析】

(1)對(duì)函數(shù)求導(dǎo),分別討論,以及,即可得出結(jié)果;(2)根據(jù)題意,由導(dǎo)數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再令,設(shè),用導(dǎo)數(shù)方法判斷出的單調(diào)性,進(jìn)而可得出結(jié)論成立.【詳解】(1)解:易得,函數(shù)的定義域?yàn)?,,令,得?①當(dāng)時(shí),時(shí),,函數(shù)單調(diào)遞減;時(shí),,函數(shù)單調(diào)遞增.此時(shí),的減區(qū)間為,增區(qū)間為.②當(dāng)時(shí),時(shí),,函數(shù)單調(diào)遞減;或時(shí),,函數(shù)單調(diào)遞增.此時(shí),的減區(qū)間為,增區(qū)間為,.③當(dāng)時(shí),時(shí),,函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論