版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省連云港市2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在棱長(zhǎng)為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點(diǎn),若三棱錐P?ABC的四個(gè)頂點(diǎn)都在球O的球面上,則球O的表面積為()A.12 B. C. D.102.在三角形中,,,求()A. B. C. D.3.已知等比數(shù)列滿足,,則()A. B. C. D.4.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.5.已知復(fù)數(shù)滿足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.6.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.7.把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)不變,再將圖象向右平移個(gè)單位,那么所得圖象的一個(gè)對(duì)稱中心為()A. B. C. D.8.下圖為一個(gè)正四面體的側(cè)面展開圖,為的中點(diǎn),則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.9.總體由編號(hào)01,,02,…,19,20的20個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來的第5個(gè)個(gè)體的編號(hào)為7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.0110.已知定義在上的函數(shù)滿足,且當(dāng)時(shí),,則方程的最小實(shí)根的值為()A. B. C. D.11.集合,,則()A. B. C. D.12.記遞增數(shù)列的前項(xiàng)和為.若,,且對(duì)中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在矩形ABCD中,,,點(diǎn)E,F(xiàn)分別為BC,CD邊上動(dòng)點(diǎn),且滿足,則的最大值為________.14.已知實(shí)數(shù),滿足,則目標(biāo)函數(shù)的最小值為__________.15.將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動(dòng),其中一組指揮交通,一組分發(fā)宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個(gè)組的概率為__________.16.已知集合,若,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.18.(12分)已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).(1)設(shè)直線,的斜率分別為,,求證:常數(shù);(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);②當(dāng)?shù)膬?nèi)切圓的面積為時(shí),求直線的方程.19.(12分)在平面直角坐標(biāo)系中,已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,為橢圓上兩點(diǎn),圓.(1)若軸,且滿足直線與圓相切,求圓的方程;(2)若圓的半徑為,點(diǎn)滿足,求直線被圓截得弦長(zhǎng)的最大值.20.(12分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對(duì)及,不等式恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知分別是橢圓的左、右焦點(diǎn),直線與交于兩點(diǎn),,且.(1)求的方程;(2)已知點(diǎn)是上的任意一點(diǎn),不經(jīng)過原點(diǎn)的直線與交于兩點(diǎn),直線的斜率都存在,且,求的值.22.(10分)已知函數(shù)(為常數(shù))(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【點(diǎn)睛】此題考查三棱錐的外接球半徑與棱長(zhǎng)的關(guān)系,及球的表面積公式,解題時(shí)要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.2、A【解析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點(diǎn)睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.3、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.4、A【解析】
由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡(jiǎn)并求解出離心率的取值范圍.【詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)椋?,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡(jiǎn)化運(yùn)算.5、D【解析】
按照復(fù)數(shù)的運(yùn)算法則先求出,再寫出,進(jìn)而求出.【詳解】,,.故選:D【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運(yùn)算能力,屬于基礎(chǔ)題.6、D【解析】
設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點(diǎn)睛】本題考查向量投影的計(jì)算,同時(shí)也考查利用向量的模計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.7、D【解析】
試題分析:把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的倍(縱坐標(biāo)不變),可得的圖象;再將圖象向右平移個(gè)單位,可得的圖象,那么所得圖象的一個(gè)對(duì)稱中心為,故選D.考點(diǎn):三角函數(shù)的圖象與性質(zhì).8、C【解析】
將正四面體的展開圖還原為空間幾何體,三點(diǎn)重合,記作,取中點(diǎn),連接,即為與直線所成的角,表示出三角形的三條邊長(zhǎng),用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點(diǎn)重合,記作:則為中點(diǎn),取中點(diǎn),連接,設(shè)正四面體的棱長(zhǎng)均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點(diǎn)睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應(yīng)用,屬于中檔題.9、D【解析】從第一行的第5列和第6列起由左向右讀數(shù)劃去大于20的數(shù)分別為:08,02,14,07,01,所以第5個(gè)個(gè)體是01,選D.考點(diǎn):此題主要考查抽樣方法的概念、抽樣方法中隨機(jī)數(shù)表法,考查學(xué)習(xí)能力和運(yùn)用能力.10、C【解析】
先確定解析式求出的函數(shù)值,然后判斷出方程的最小實(shí)根的范圍結(jié)合此時(shí)的,通過計(jì)算即可得到答案.【詳解】當(dāng)時(shí),,所以,故當(dāng)時(shí),,所以,而,所以,又當(dāng)時(shí),的極大值為1,所以當(dāng)時(shí),的極大值為,設(shè)方程的最小實(shí)根為,,則,即,此時(shí)令,得,所以最小實(shí)根為411.故選:C.【點(diǎn)睛】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識(shí),本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.11、A【解析】
解一元二次不等式化簡(jiǎn)集合A,再根據(jù)對(duì)數(shù)的真數(shù)大于零化簡(jiǎn)集合B,求交集運(yùn)算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點(diǎn)睛】本題主要考查了集合的交集運(yùn)算,涉及一元二次不等式解法及對(duì)數(shù)的概念,屬于中檔題.12、D【解析】
由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用平面直角坐標(biāo)系,設(shè)出點(diǎn)E,F(xiàn)的坐標(biāo),由可得,利用數(shù)量積運(yùn)算求得,再利用線性規(guī)劃的知識(shí)求出的最大值.【詳解】建立平面直角坐標(biāo)系,如圖(1)所示:設(shè),,,即,又,令,其中,畫出圖形,如圖(2)所示:當(dāng)直線經(jīng)過點(diǎn)時(shí),取得最大值.故答案為:【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、簡(jiǎn)單的線性規(guī)劃問題,解題的關(guān)鍵是建立恰當(dāng)?shù)淖鴺?biāo)系,屬于基礎(chǔ)題.14、-1【解析】
作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值.【詳解】作出實(shí)數(shù)x,y滿足對(duì)應(yīng)的平面區(qū)域如圖陰影所示;由z=x+2y﹣1,得yx,平移直線yx,由圖象可知當(dāng)直線yx經(jīng)過點(diǎn)A時(shí),直線yx的縱截距最小,此時(shí)z最?。桑肁(﹣1,﹣1),此時(shí)z的最小值為z=﹣1﹣2﹣1=﹣1,故答案為﹣1.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,是基礎(chǔ)題15、【解析】
先求出總的基本事件數(shù),再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數(shù),然后根據(jù)古典概型求解.【詳解】6人平均分成兩組參加“文明交通”志愿者活動(dòng),其中一組指揮交通,一組分發(fā)宣傳資料的基本事件總數(shù)共有個(gè),甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個(gè)數(shù)有:個(gè),所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【點(diǎn)睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.16、1【解析】
分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進(jìn)行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點(diǎn)睛】本題考查集合元素的特性:確定性、互異性、無序性.確定集合中元素,要注意檢驗(yàn)集合中的元素是否滿足互異性.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明見解析;(Ⅱ)【解析】
(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計(jì)算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量,則,即,取得到,,設(shè)直線與平面所成角為故.【點(diǎn)睛】本題考查了線面垂直,線面夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.18、(1)證明見解析;(2)①;②.【解析】
(1)設(shè)過的直線交拋物線于,,聯(lián)立,利用直線的斜率公式和韋達(dá)定理表示出,化簡(jiǎn)即可;(2)由(1)知點(diǎn)在軸上,故,設(shè)出直線方程,求出交點(diǎn)坐標(biāo),因?yàn)閮?nèi)心到三角形各邊的距離相等且均為內(nèi)切圓半徑,列出方程組求解即可.【詳解】(1)設(shè)過的直線交拋物線于,,聯(lián)立方程組,得:.于是,有:,又,;(2)①由(1)知點(diǎn)在軸上,故,聯(lián)立的直線方程:.,又點(diǎn)在拋物線上,得,又,;②由題得,(解法一)所以直線的方程為(解法二)設(shè)內(nèi)切圓半徑為,則.設(shè)直線的斜率為,則:直線的方程為:代入直線的直線方程,可得于是有:得,又由(1)可設(shè)內(nèi)切圓的圓心為則,即:,解得:所以,直線的方程為:.【點(diǎn)睛】本題主要考查了拋物線的性質(zhì),直線與拋物線相關(guān)的綜合問題的求解,考查了學(xué)生的運(yùn)算求解與邏輯推理能力.19、(1)(2)【解析】試題分析:(1)確定圓的方程,就是確定半徑的值,因?yàn)橹本€與圓相切,所以先確定直線方程,即確定點(diǎn)坐標(biāo):因?yàn)檩S,所以,根據(jù)對(duì)稱性,可取,則直線的方程為,根據(jù)圓心到切線距離等于半徑得(2)根據(jù)垂徑定理,求直線被圓截得弦長(zhǎng)的最大值,就是求圓心到直線的距離的最小值.設(shè)直線的方程為,則圓心到直線的距離,利用得,化簡(jiǎn)得,利用直線方程與橢圓方程聯(lián)立方程組并結(jié)合韋達(dá)定理得,因此,當(dāng)時(shí),取最小值,取最大值為.試題解析:解:(1)因?yàn)闄E圓的方程為,所以,.因?yàn)檩S,所以,而直線與圓相切,根據(jù)對(duì)稱性,可取,則直線的方程為,即.由圓與直線相切,得,所以圓的方程為.(2)易知,圓的方程為.①當(dāng)軸時(shí),,所以,此時(shí)得直線被圓截得的弦長(zhǎng)為.②當(dāng)與軸不垂直時(shí),設(shè)直線的方程為,,首先由,得,即,所以(*).聯(lián)立,消去,得,將代入(*)式,得.由于圓心到直線的距離為,所以直線被圓截得的弦長(zhǎng)為,故當(dāng)時(shí),有最大值為.綜上,因?yàn)椋灾本€被圓截得的弦長(zhǎng)的最大值為.考點(diǎn):直線與圓位置關(guān)系20、(Ⅰ).(Ⅱ).【解析】
詳解:(Ⅰ)當(dāng)時(shí),由,解得;當(dāng)時(shí),不成立;當(dāng)時(shí),由,解得.所以不等式的解集為.(Ⅱ)因?yàn)?,所?由題意知對(duì),,即,因?yàn)椋?,解?【點(diǎn)睛】⑴絕對(duì)值不等式解法的基本思路是:去掉絕對(duì)值號(hào),把它轉(zhuǎn)化為一般的不等式求解,轉(zhuǎn)化的方法一般有:①絕對(duì)值定義法;②平方法;③零點(diǎn)區(qū)域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 12604.14-2024無損檢測(cè)術(shù)語第14部分:視覺檢測(cè)
- 中毒性紅斑的臨床護(hù)理
- 產(chǎn)后手腳發(fā)麻的健康宣教
- 《教學(xué)拍牙齒片子》課件
- 腳趾長(zhǎng)水泡的臨床護(hù)理
- 在政協(xié)委員培訓(xùn)班上輔導(dǎo)工作的報(bào)告材料
- 《保險(xiǎn)新人培訓(xùn)》課件
- 《自動(dòng)控制原理》課件第12章
- 全身脂肪代謝障礙的臨床護(hù)理
- 鼻血管瘤的健康宣教
- 學(xué)校教研工作組織機(jī)構(gòu)(5篇范例)
- 消防救援-低溫雨雪冰凍惡劣天氣條件下災(zāi)害防范及救援行動(dòng)與安全
- 2023年護(hù)士資格考試高分備考題庫大全(單選5000題)-第1部分(700題)
- 《汽車傳感器》課件
- 中醫(yī)內(nèi)科學(xué)課件-癲狂
- 分享會(huì)之蹲馬步管理工坊
- 水土保持監(jiān)理實(shí)施細(xì)則
- 第9課小測(cè)-2023-2024學(xué)年初中日語人教版第三冊(cè)(含答案)
- 2023年諸暨市重點(diǎn)高中提前招生選拔考試科學(xué)試卷
- 學(xué)術(shù)規(guī)范與學(xué)術(shù)倫理學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
評(píng)論
0/150
提交評(píng)論