2025屆安徽師大附中高考數(shù)學押題試卷含解析_第1頁
2025屆安徽師大附中高考數(shù)學押題試卷含解析_第2頁
2025屆安徽師大附中高考數(shù)學押題試卷含解析_第3頁
2025屆安徽師大附中高考數(shù)學押題試卷含解析_第4頁
2025屆安徽師大附中高考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆安徽師大附中高考數(shù)學押題試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在等腰梯形中,,,,為的中點,將與分別沿、向上折起,使、重合為點,則三棱錐的外接球的體積是()A. B.C. D.2.若復(fù)數(shù)()是純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.設(shè)為等差數(shù)列的前項和,若,則A. B.C. D.4.函數(shù)的定義域為()A.或 B.或C. D.5.某學校為了調(diào)查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.906.若集合,,則下列結(jié)論正確的是()A. B. C. D.7.已知角的終邊經(jīng)過點P(),則sin()=A. B. C. D.8.數(shù)列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項的和S100=()A.132 B.299 C.68 D.999.已知集合,則()A. B. C. D.10.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)的共軛復(fù)數(shù)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.12.已知,則的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)x,y滿足,則的最大值為____________.14.已知為雙曲線的左、右焦點,過點作直線與圓相切于點,且與雙曲線的右支相交于點,若是上的一個靠近點的三等分點,且,則四邊形的面積為_______.15.關(guān)于函數(shù)有下列四個命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關(guān)于中心對稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導(dǎo)函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)16.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數(shù)列,則的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.18.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當時,求函數(shù)的極值;(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,求證:函數(shù)有且僅有一個零點.19.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對,不等式恒成立,求的取值范圍.20.(12分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點.(1)證明:平面;(2)求二面角平面角的余弦值.21.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當時,如果方程有兩個不等實根,求實數(shù)t的取值范圍,并證明.22.(10分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標軸的直線交橢圓與兩點,點關(guān)于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由題意等腰梯形中的三個三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長為1的正四面體,設(shè)是的中心,則平面,,,外接球球心必在高上,設(shè)外接球半徑為,即,∴,解得,球體積為.故選:A.【點睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.2、B【解析】

化簡復(fù)數(shù),由它是純虛數(shù),求得,從而確定對應(yīng)的點的坐標.【詳解】是純虛數(shù),則,,,對應(yīng)點為,在第二象限.故選:B.【點睛】本題考查復(fù)數(shù)的除法運算,考查復(fù)數(shù)的概念與幾何意義.本題屬于基礎(chǔ)題.3、C【解析】

根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.4、A【解析】

根據(jù)偶次根式被開方數(shù)非負可得出關(guān)于的不等式,即可解得函數(shù)的定義域.【詳解】由題意可得,解得或.因此,函數(shù)的定義域為或.故選:A.【點睛】本題考查具體函數(shù)定義域的求解,考查計算能力,屬于基礎(chǔ)題.5、A【解析】

利用頻率分布直方圖得到支出在的同學的頻率,再結(jié)合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學生概念理解,數(shù)據(jù)處理,數(shù)學運算的能力,屬于基礎(chǔ)題.6、D【解析】

由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關(guān)系,考查了學生概念理解,數(shù)學運算能力,屬于基礎(chǔ)題.7、A【解析】

由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項.8、B【解析】

由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對任意的,均有為定值,,故,是以3為周期的數(shù)列,故,.故選:.【點睛】本題考查周期數(shù)列求和,屬于中檔題.9、B【解析】

計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.10、D【解析】

將復(fù)數(shù)化簡得,,即可得到對應(yīng)的點為,即可得出結(jié)果.【詳解】,對應(yīng)的點位于第四象限.故選:.【點睛】本題考查復(fù)數(shù)的四則運算,考查共軛復(fù)數(shù)和復(fù)數(shù)與平面內(nèi)點的對應(yīng),難度容易.11、C【解析】

幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.12、B【解析】

利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運算性質(zhì)比較a,c進而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

直接用表示出,然后由不等式性質(zhì)得出結(jié)論.【詳解】由題意,又,∴,即,∴的最大值為1.故答案為:1.【點睛】本題考查不等式的性質(zhì),掌握不等式的性質(zhì)是解題關(guān)鍵.14、60【解析】

根據(jù)題中給的信息與雙曲線的定義可求得與,再在中,由余弦定理求解得,繼而得到各邊的長度,再根據(jù)計算求解即可.【詳解】如圖所示:設(shè)雙曲線的半焦距為.因為,,,所以由勾股定理,得.所以.因為是上一個靠近點的三等分點,是的中點,所以.由雙曲線的定義可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.則.則,得.則的底邊上的高為.所以.故答案為:60【點睛】本題主要考查了雙曲線中利用定義與余弦定理求解線段長度與面積的方法,需要根據(jù)雙曲線的定義表示各邊的長度,再在合適的三角形里面利用余弦定理求得基本量的關(guān)系.屬于難題.15、①②③【解析】

由單調(diào)性、對稱性概念、導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值的關(guān)系進行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關(guān)于中心對稱,②正確;,時取等號,∴③正確;,設(shè),則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數(shù)的單調(diào)性、對稱性,考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值,解題時按照相關(guān)概念判斷即可,屬于中檔題.16、【解析】

設(shè),,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長,,成等差數(shù)列,設(shè),,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)連結(jié)BM,推導(dǎo)出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進而AA1⊥平面BCM,AA1⊥MB,推導(dǎo)出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導(dǎo)出△ABA1是等腰直角三角形,設(shè)AB,則AA1=2a,BM=AM=a,推導(dǎo)出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標原點,MA1,MB,MC為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結(jié),因為是矩形,所以,因為,所以,又因為,,所以平面,所以,又因為,所以是中點,取中點,連結(jié),,因為是的中點,則且,所以且,所以四邊形是平行四邊形,所以,又因為平面,平面,所以平面.(圖1)(圖2)(2)因為,所以是等腰直角三角形,設(shè),則,.在中,,所以.在中,,所以,由(1)知,則,,如圖2,以為坐標原點,,,的方向分別為軸,軸,軸的正方向建立空間直角坐標系,則,,.所以,則,,設(shè)平面的法向量為,則即取得.故平面的一個法向量為,因為平面的一個法向量為,則.因為二面角為鈍角,所以二面角的余弦值為.【點睛】本題考查線面平行的證明,考查了利用空間向量法求解二面角的方法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.18、見解析【解析】

(1)當時,函數(shù),其定義域為,則,設(shè),,易知函數(shù)在上單調(diào)遞增,且,所以當時,,即;當時,,即,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在處取得極小值,為,無極大值.(2)由題可得函數(shù)的定義域為,,設(shè),,顯然函數(shù)在上單調(diào)遞增,當時,,,所以函數(shù)在內(nèi)有一個零點,所以函數(shù)有且僅有一個零點;當時,,,所以函數(shù)有且僅有一個零點,所以函數(shù)有且僅有一個零點;當時,,,因為,所以,,又,所以函數(shù)在內(nèi)有一個零點,所以函數(shù)有且僅有一個零點.綜上,函數(shù)有且僅有一個零點.19、(1);(2).【解析】

(1)分類討論,,,即可得出結(jié)果;(2)先由題意,將問題轉(zhuǎn)化為即可,再求出,的最小值,解不等式即可得出結(jié)果.【詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當時,,所以;因為,所以,解得,結(jié)合,所以的取值范圍是.【點睛】本題主要考查含絕對值不等式的解法,以及由不等式恒成立求參數(shù)的問題,熟記分類討論的思想、以及絕對值不等式的性質(zhì)即可,屬于??碱}型.20、(1)證明見解析(2)【解析】

(1)分別取,的中點,,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點為原點,以為軸,以為軸,以為軸,建立空間直角坐標系,分別計算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計算即可.【詳解】(1)證明:分別取,的中點,,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以點為原點,以為軸,以為軸,以為軸,建立如圖所示空間直角坐標系由面,所以面的法向量可取,點,點,點,,,設(shè)面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點睛】本題考查由面面平行證明線面平行以及向量法求二面角的余弦值,考查學生的運算能力,在做此類題時,一定要準確寫出點的坐標.21、(1)當時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2),證明見解析.【解析】

(1)求出,對分類討論,分別求出的解,即可得出結(jié)論;(2)由(1)得出有兩解時的范圍,以及關(guān)系,將,等價轉(zhuǎn)化為證明,不妨設(shè),令,則,即證,構(gòu)造函數(shù),只要證明對于任意恒成立即可.【詳解】(1)的定義域為R,且.由,得;由,得.故當時,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當時,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(2)由(1)知當時,,且.當時,;當時,.當時,直線與的圖像有兩個交點,實數(shù)t的取值范圍是.方程有兩個不等實根,,,,,,即.要證,只需證,即證,不妨設(shè).令,則,則要證,即證.令,則.令,則,在上單調(diào)遞增,.,在上單調(diào)遞增,,即成立,即成立..【點睛】本題考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)單調(diào)性、極值、零點、不等式證明,構(gòu)造函數(shù)函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論