版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆云南省瀾滄縣民族中學(xué)高考全國統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù)(,為自然對(duì)數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.2.已知是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于兩點(diǎn),若,則的內(nèi)切圓半徑為()A. B. C. D.3.已知、分別為雙曲線:(,)的左、右焦點(diǎn),過的直線交于、兩點(diǎn),為坐標(biāo)原點(diǎn),若,,則的離心率為()A.2 B. C. D.4.已知三棱錐中,為的中點(diǎn),平面,,,則有下列四個(gè)結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時(shí),與平面所成的角的范圍為;④當(dāng)時(shí),為平面內(nèi)一動(dòng)點(diǎn),若OM∥平面,則在內(nèi)軌跡的長(zhǎng)度為1.其中正確的個(gè)數(shù)是().A.1 B.1 C.3 D.45.已知四棱錐,底面ABCD是邊長(zhǎng)為1的正方形,,平面平面ABCD,當(dāng)點(diǎn)C到平面ABE的距離最大時(shí),該四棱錐的體積為()A. B. C. D.16.已知圓關(guān)于雙曲線的一條漸近線對(duì)稱,則雙曲線的離心率為()A. B. C. D.7.已知集合,若,則實(shí)數(shù)的取值范圍為()A. B. C. D.8.已知函數(shù)的圖象在點(diǎn)處的切線方程是,則()A.2 B.3 C.-2 D.-39.△ABC的內(nèi)角A,B,C的對(duì)邊分別為,已知,則為()A. B. C.或 D.或10.函數(shù)的部分圖象大致是()A. B.C. D.11.已知表示兩條不同的直線,表示兩個(gè)不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要12.如圖所示的程序框圖,若輸入,,則輸出的結(jié)果是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線,點(diǎn)為拋物線上一動(dòng)點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)分別為,則線段長(zhǎng)度的取值范圍為__________.14.已知函數(shù),若函數(shù)恰有4個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.15.直線xsinα+y+2=0的傾斜角的取值范圍是________________.16.已知數(shù)列是等比數(shù)列,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績(jī)分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.(1)求的值;(2)填寫下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?文科生理科生合計(jì)獲獎(jiǎng)6不獲獎(jiǎng)合計(jì)400(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已知數(shù)列中,(實(shí)數(shù)為常數(shù)),是其前項(xiàng)和,且數(shù)列是等比數(shù)列,恰為與的等比中項(xiàng).(1)證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項(xiàng)公式;(3)若,當(dāng)時(shí),的前項(xiàng)和為,求證:對(duì)任意,都有.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)求的極坐標(biāo)方程和的直角坐標(biāo)方程;(Ⅱ)設(shè)分別交于兩點(diǎn)(與原點(diǎn)不重合),求的最小值.20.(12分)在多面體中,四邊形是正方形,平面,,,為的中點(diǎn).(1)求證:;(2)求平面與平面所成角的正弦值.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)為曲線上位于第一,二象限的兩個(gè)動(dòng)點(diǎn),且,射線交曲線分別于,求面積的最小值,并求此時(shí)四邊形的面積.22.(10分)已知函數(shù)(,),.(Ⅰ)討論的單調(diào)性;(Ⅱ)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對(duì)函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)?,所以,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖?,所以,所以,化?jiǎn)得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)椋砸乖跁r(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.2、B【解析】
首先由求得雙曲線的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長(zhǎng)乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長(zhǎng)為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點(diǎn)睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.3、D【解析】
作出圖象,取AB中點(diǎn)E,連接EF2,設(shè)F1A=x,根據(jù)雙曲線定義可得x=2a,再由勾股定理可得到c2=7a2,進(jìn)而得到e的值【詳解】解:取AB中點(diǎn)E,連接EF2,則由已知可得BF1⊥EF2,F(xiàn)1A=AE=EB,設(shè)F1A=x,則由雙曲線定義可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,則EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,則e故選:D.【點(diǎn)睛】本題考查雙曲線定義的應(yīng)用,考查離心率的求法,數(shù)形結(jié)合思想,屬于中檔題.對(duì)于圓錐曲線中求離心率的問題,關(guān)鍵是列出含有中兩個(gè)量的方程,有時(shí)還要結(jié)合橢圓、雙曲線的定義對(duì)方程進(jìn)行整理,從而求出離心率.4、C【解析】
由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯(cuò)誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯(cuò)誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號(hào).可得的最大值為,即的范圍為,③正確;取中點(diǎn),的中點(diǎn),連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點(diǎn)睛】此題考查立體幾何中與點(diǎn)、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類問題,可以用已知的定理或性質(zhì)來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.5、B【解析】
過點(diǎn)E作,垂足為H,過H作,垂足為F,連接EF.因?yàn)槠矫鍭BE,所以點(diǎn)C到平面ABE的距離等于點(diǎn)H到平面ABE的距離.設(shè),將表示成關(guān)于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過點(diǎn)E作,垂足為H,過H作,垂足為F,連接EF.因?yàn)槠矫嫫矫鍭BCD,所以平面ABCD,所以.因?yàn)榈酌鍭BCD是邊長(zhǎng)為1的正方形,,所以.因?yàn)槠矫鍭BE,所以點(diǎn)C到平面ABE的距離等于點(diǎn)H到平面ABE的距離.易證平面平面ABE,所以點(diǎn)H到平面ABE的距離,即為H到EF的距離.不妨設(shè),則,.因?yàn)?,所以,所以,?dāng)時(shí),等號(hào)成立.此時(shí)EH與ED重合,所以,.故選:B.【點(diǎn)睛】本題考查空間中點(diǎn)到面的距離的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意輔助線及面面垂直的應(yīng)用.6、C【解析】
將圓,化為標(biāo)準(zhǔn)方程為,求得圓心為.根據(jù)圓關(guān)于雙曲線的一條漸近線對(duì)稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標(biāo)準(zhǔn)方程為:,所以圓心為.因?yàn)殡p曲線,所以其漸近線方程為,又因?yàn)閳A關(guān)于雙曲線的一條漸近線對(duì)稱,則圓心在漸近線上,所以.所以.故選:C【點(diǎn)睛】本題主要考查圓的方程及對(duì)稱性,還有雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.7、A【解析】
解一元二次不等式化簡(jiǎn)集合的表示,求解函數(shù)的定義域化簡(jiǎn)集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進(jìn)行求解即可.【詳解】,.因?yàn)?,所以有,因此?故選:A【點(diǎn)睛】本題考查了已知集合運(yùn)算的結(jié)果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運(yùn)算能力.8、B【解析】
根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【詳解】因?yàn)?,所以所以,又也在直線上,所以,解得所以.故選:B【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.9、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點(diǎn)睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.10、C【解析】
判斷函數(shù)的性質(zhì),和特殊值的正負(fù),以及值域,逐一排除選項(xiàng).【詳解】,函數(shù)是奇函數(shù),排除,時(shí),,時(shí),,排除,當(dāng)時(shí),,時(shí),,排除,符合條件,故選C.【點(diǎn)睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎(chǔ)題型,一般根據(jù)選項(xiàng)判斷函數(shù)的奇偶性,零點(diǎn),特殊值的正負(fù),以及單調(diào)性,極值點(diǎn)等排除選項(xiàng).11、B【解析】
根據(jù)充分必要條件的概念進(jìn)行判斷.【詳解】對(duì)于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點(diǎn)睛】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運(yùn)用知識(shí)的能力.解決充要條件判斷問題,關(guān)鍵是要弄清楚誰是條件,誰是結(jié)論.12、B【解析】
列舉出循環(huán)的每一步,可得出輸出結(jié)果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【點(diǎn)睛】本題考查利用程序框圖計(jì)算輸出結(jié)果,一般要將算法的每一步列舉出來,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
連接,易得,可得四邊形的面積為,從而可得,進(jìn)而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當(dāng)最小時(shí),最小,設(shè)點(diǎn),則,所以當(dāng)時(shí),,則,當(dāng)點(diǎn)的橫坐標(biāo)時(shí),,此時(shí),因?yàn)殡S著的增大而增大,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,考查拋物線上的動(dòng)點(diǎn)到定點(diǎn)的距離的求法,考查學(xué)生的計(jì)算求解能力,屬于中檔題.14、【解析】
函數(shù)恰有4個(gè)零點(diǎn),等價(jià)于函數(shù)與函數(shù)的圖象有四個(gè)不同的交點(diǎn),畫出函數(shù)圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】函數(shù)恰有4個(gè)零點(diǎn),等價(jià)于函數(shù)與函數(shù)的圖象有四個(gè)不同的交點(diǎn),畫出函數(shù)圖象如下圖所示:由圖象可知:實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查了已知函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)取值范圍問題,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想.15、【解析】因?yàn)閟inα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關(guān)系得傾斜角范圍是.答案:16、【解析】
根據(jù)等比數(shù)列通項(xiàng)公式,首先求得,然后求得.【詳解】設(shè)的公比為,由,得,故.故答案為:【點(diǎn)睛】本小題主要考查等比數(shù)列通項(xiàng)公式的基本量計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,.(2)填表見解析;在犯錯(cuò)誤的概率不超過0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)(3)詳見解析【解析】
(1)根據(jù)頻率分步直方圖和構(gòu)成以2為公比的等比數(shù)列,即可得解;(2)由頻率分步直方圖算出相應(yīng)的頻數(shù)即可填寫列聯(lián)表,再用的計(jì)算公式運(yùn)算即可;(3)獲獎(jiǎng)的概率為,隨機(jī)變量,再根據(jù)二項(xiàng)分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因?yàn)闃?gòu)成以2為公比的等比數(shù)列,所以,解得,所以,.故,,.(2)獲獎(jiǎng)的人數(shù)為人,因?yàn)閰⒖嫉奈目粕c理科生人數(shù)之比為,所以400人中文科生的數(shù)量為,理科生的數(shù)量為.由表可知,獲獎(jiǎng)的文科生有6人,所以獲獎(jiǎng)的理科生有人,不獲獎(jiǎng)的文科生有人.于是可以得到列聯(lián)表如下:文科生理科生合計(jì)獲獎(jiǎng)61420不獲獎(jiǎng)74306380合計(jì)80320400所以在犯錯(cuò)誤的概率不超過0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān).(3)由(2)可知,獲獎(jiǎng)的概率為,的可能取值為0,1,2,,,,分布列如下:012數(shù)學(xué)期望為.【點(diǎn)睛】本題考查頻率分布直方圖、統(tǒng)計(jì)案例和離散型隨機(jī)變量的分布列與期望,考查學(xué)生的閱讀理解能力和計(jì)算能力,屬于中檔題.18、(1)見解析(2)(3)見解析【解析】
(1)令可得,即.得到,再利用通項(xiàng)公式和前n項(xiàng)和的關(guān)系求解,(2)由(1)知,.設(shè)等比數(shù)列的公比為,所以,再根據(jù)恰為與的等比中項(xiàng)求解,(3)由(2)得到時(shí),,,求得,再代入證明?!驹斀狻浚?)解:令可得,即.所以.時(shí),可得,當(dāng)時(shí),所以.顯然當(dāng)時(shí),滿足上式.所以.,所以數(shù)列是等差數(shù)列,(2)由(1)知,.設(shè)等比數(shù)列的公比為,所以,恰為與的等比中項(xiàng),所以,解得,所以(3)時(shí),,,而時(shí),,,所以當(dāng)時(shí),.當(dāng)時(shí),,∴對(duì)任意,都有,【點(diǎn)睛】本題主要考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系,等差數(shù)列,等比數(shù)列的定義和性質(zhì)以及數(shù)列放縮的方法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題,19、(Ⅰ)直線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,的直角坐標(biāo)方程為;(Ⅱ)2.【解析】
(Ⅰ)由定義可直接寫出直線的極坐標(biāo)方程,對(duì)曲線同乘可得:,轉(zhuǎn)化成直角坐標(biāo)為;(Ⅱ)分別聯(lián)立兩直線和曲線的方程,由得,由得,則,結(jié)合三角函數(shù)即可求解;【詳解】(Ⅰ)直線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為由曲線的極坐標(biāo)方程得,所以的直角坐標(biāo)方程為.(Ⅱ)與的極坐標(biāo)方程聯(lián)立得所以.與的極坐標(biāo)方程聯(lián)立得所以.所以.所以當(dāng)時(shí),取最小值2.【點(diǎn)睛】本題考查參數(shù)方程與極坐標(biāo)方程的互化,極坐標(biāo)方程與直角坐標(biāo)方程的互化,極坐標(biāo)中的幾何意義,屬于中檔題20、(1)證明見解析(2)【解析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點(diǎn),∴.∵,∴平面.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《課外閱讀相變存儲(chǔ)器》課件
- 語文:高考每日快餐(79套)
- 渴望苦難高考語文閱讀理解
- 高三語文一輪復(fù)習(xí)(十八)文言文實(shí)詞
- 教育培訓(xùn)機(jī)構(gòu)銷售專員工作總結(jié)
- 高中美術(shù)專業(yè)培養(yǎng)方案計(jì)劃
- 酒店經(jīng)營總結(jié)
- 汽車租賃公司前臺(tái)工作總結(jié)
- 重慶市江津區(qū)2022-2023學(xué)年九年級(jí)上期期末化學(xué)試題
- 門診護(hù)士工作總結(jié)
- 2025年初級(jí)會(huì)計(jì)職稱《經(jīng)濟(jì)法基礎(chǔ)》全真模擬及答案(解析3套)
- 《健康社區(qū)評(píng)價(jià)標(biāo)準(zhǔn)》
- 戶外市場(chǎng)研究報(bào)告-魔鏡洞察-202412
- 浙江省金華市金東區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期語文期末試卷
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之2:“1至3章:范圍、術(shù)語和定義”(雷澤佳編制-2025B0)
- (2021)最高法民申5114號(hào)凱某建設(shè)工程合同糾紛案 指導(dǎo)
- 【9物(人)期末】安慶市宿松縣2023-2024學(xué)年九年級(jí)上學(xué)期期末考試物理試題
- 導(dǎo)航通信一體化考核試卷
- 甘肅省會(huì)寧二中2025屆高考仿真模擬數(shù)學(xué)試卷含解析
- 2024年未成年子女房產(chǎn)贈(zèng)與協(xié)議
- 2024-2030年中國共模電感環(huán)形鐵芯行業(yè)發(fā)展?fàn)顩r規(guī)劃分析報(bào)告
評(píng)論
0/150
提交評(píng)論