版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
景德鎮(zhèn)市重點(diǎn)中學(xué)2025屆高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知四棱錐的底面為矩形,底面,點(diǎn)在線段上,以為直徑的圓過點(diǎn).若,則的面積的最小值為()A.9 B.7 C. D.2.雙曲線x2a2A.y=±2x B.y=±3x3.若sin(α+3π2A.-12 B.-134.已知平面向量,滿足且,若對每一個(gè)確定的向量,記的最小值為,則當(dāng)變化時(shí),的最大值為()A. B. C. D.15.已知正方體的體積為,點(diǎn),分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.6.已知函數(shù),集合,,則()A. B.C. D.7.已知實(shí)數(shù)集,集合,集合,則()A. B. C. D.8.若的展開式中二項(xiàng)式系數(shù)和為256,則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為()A.85 B.84 C.57 D.569.已知函數(shù)f(x)=,若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是()A. B.C. D.10.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.11.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.12.已知函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.下圖是一個(gè)算法流程圖,則輸出的的值為__________.14.若一組樣本數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則該組樣本數(shù)據(jù)的方差為______.15.已知,則_____。16.若實(shí)數(shù),滿足不等式組,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面平面,.(Ⅰ)求證:平面;(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.18.(12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前19.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.20.(12分)改革開放年,我國經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識(shí)也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識(shí),某小組利用假期進(jìn)行一次全市駕駛員交通安全意識(shí)調(diào)查.隨機(jī)抽取男女駕駛員各人,進(jìn)行問卷測評,所得分?jǐn)?shù)的頻率分布直方圖如圖所示在分以上為交通安全意識(shí)強(qiáng).求的值,并估計(jì)該城市駕駛員交通安全意識(shí)強(qiáng)的概率;已知交通安全意識(shí)強(qiáng)的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識(shí)與性別有關(guān);安全意識(shí)強(qiáng)安全意識(shí)不強(qiáng)合計(jì)男性女性合計(jì)用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機(jī)選取人對未來一年內(nèi)的交通違章情況進(jìn)行跟蹤調(diào)查,求至少有人得分低于分的概率.附:其中21.(12分)設(shè)函數(shù),(1)當(dāng),,求不等式的解集;(2)已知,,的最小值為1,求證:.22.(10分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論零點(diǎn)的個(gè)數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因?yàn)槠矫妫矫?,所?又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因?yàn)椋?dāng)且僅當(dāng),時(shí)等號(hào)成立,所以.故選:C.【點(diǎn)睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.2、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線方程為y=±bax點(diǎn)睛:已知雙曲線方程x2a23、B【解析】
由三角函數(shù)的誘導(dǎo)公式和倍角公式化簡即可.【詳解】因?yàn)閟inα+3π2=3故選B【點(diǎn)睛】本題考查了三角函數(shù)的誘導(dǎo)公式和倍角公式,靈活掌握公式是關(guān)鍵,屬于基礎(chǔ)題.4、B【解析】
根據(jù)題意,建立平面直角坐標(biāo)系.令.為中點(diǎn).由即可求得點(diǎn)的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點(diǎn)共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當(dāng)與圓相切時(shí),有最大值.利用圓的切線性質(zhì)及點(diǎn)到直線距離公式即可求得直線方程,進(jìn)而求得原點(diǎn)到直線的距離,即為的最大值.【詳解】根據(jù)題意,設(shè),則由代入可得即點(diǎn)的軌跡方程為又因?yàn)?變形可得,即,且所以由平面向量基本定理可知三點(diǎn)共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當(dāng)與圓相切時(shí),有最大值設(shè)切線的方程為,化簡可得由切線性質(zhì)及點(diǎn)到直線距離公式可得,化簡可得即所以切線方程為或所以當(dāng)變化時(shí),到直線的最大值為即的最大值為故選:B【點(diǎn)睛】本題考查了平面向量的坐標(biāo)應(yīng)用,平面向量基本定理的應(yīng)用,圓的軌跡方程問題,圓的切線性質(zhì)及點(diǎn)到直線距離公式的應(yīng)用,綜合性強(qiáng),屬于難題.5、D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,
∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時(shí),最小,
∴
設(shè)正方體的棱長為,則,∴.
取,連接,則共面,在中,設(shè)到的距離為,
設(shè)到平面的距離為,
.
故選D.【點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計(jì)算能力,是中檔題.6、C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點(diǎn)睛】本題主要考查了集合的基本運(yùn)算,難度容易.7、A【解析】
可得集合,求出補(bǔ)集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點(diǎn)睛】本題考查了集合的補(bǔ)集和交集的混合運(yùn)算,屬于基礎(chǔ)題.8、A【解析】
先求,再確定展開式中的有理項(xiàng),最后求系數(shù)之和.【詳解】解:的展開式中二項(xiàng)式系數(shù)和為256故,要求展開式中的有理項(xiàng),則則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為:故選:A【點(diǎn)睛】考查二項(xiàng)式的二項(xiàng)式系數(shù)及展開式中有理項(xiàng)系數(shù)的確定,基礎(chǔ)題.9、D【解析】
由已知可將問題轉(zhuǎn)化為:y=f(x)的圖象和直線y=kx-有4個(gè)交點(diǎn),作出圖象,由圖可得:點(diǎn)(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時(shí),k=;結(jié)合圖象即可得解.【詳解】若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則y=f(x)的圖象和直線y=kx-有4個(gè)交點(diǎn).作出函數(shù)y=f(x)的圖象,如圖,故點(diǎn)(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當(dāng)直線y=kx-和y=lnx相切時(shí),設(shè)切點(diǎn)橫坐標(biāo)為m,則k==,∴m=.此時(shí),k==,f(x)的圖象和直線y=kx-有3個(gè)交點(diǎn),不滿足條件,故所求k的取值范圍是,故選D..【點(diǎn)睛】本題主要考查了函數(shù)與方程思想及轉(zhuǎn)化能力,還考查了導(dǎo)數(shù)的幾何意義及計(jì)算能力、觀察能力,屬于難題.10、C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題11、D【解析】
根據(jù)三角形的面積公式以及余弦定理進(jìn)行化簡求出的值,然后利用兩角和差的正弦公式進(jìn)行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點(diǎn)睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進(jìn)行計(jì)算是解決本題的關(guān)鍵.12、C【解析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時(shí),,在上單調(diào)遞增,不合題意.當(dāng)時(shí),,在上單調(diào)遞減,也不合題意.當(dāng)時(shí),則時(shí),,在上單調(diào)遞減,時(shí),,在上單調(diào)遞增,又,所以在上有兩個(gè)零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
分析程序中各變量、各語句的作用,根據(jù)流程圖所示的順序,即可得出結(jié)論.【詳解】解:初始,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;經(jīng)判斷,此時(shí)跳出循環(huán),輸出.故答案為:【點(diǎn)睛】本題考查了程序框圖的應(yīng)用問題,解題的關(guān)鍵是對算法語句的理解,屬基礎(chǔ)題.14、1【解析】
根據(jù)題意,由平均數(shù)公式可得,解得的值,進(jìn)而由方差公式計(jì)算,可得答案.【詳解】根據(jù)題意,數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則,解得:,則其方差.故答案為:1.【點(diǎn)睛】本題考平均數(shù)、方差的計(jì)算,考查運(yùn)算求解能力,求解時(shí)注意求出的值,屬于基礎(chǔ)題.15、【解析】
由已知求,再利用和角正切公式,求得,【詳解】因?yàn)樗詂os因此.【點(diǎn)睛】本題考查了同角三角函數(shù)基本關(guān)系式與和角的正切公式。16、5【解析】
根據(jù)題意,畫出圖像,數(shù)形結(jié)合,將目標(biāo)轉(zhuǎn)化為求動(dòng)直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區(qū)域如圖陰影區(qū)域所示,令,則.分析知,當(dāng),時(shí),取得最小值,且.【點(diǎn)睛】本題考查線性規(guī)劃問題,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性質(zhì)可得平面,即可得到,從而得證;(Ⅱ)在平面中,過點(diǎn)作于點(diǎn),則平面,如圖所示建立空間直角坐標(biāo)系,設(shè),其中,利用空間向量法得到二面角的余弦,即可得到的關(guān)系,從而得解;【詳解】解:(Ⅰ)證明:在中,,解得,則,從而因?yàn)槠矫嫫矫?,平面平面所以平面,又因?yàn)槠矫?,所以,因?yàn)椋?,平面,平面,所以平面;(Ⅱ)解:在平面中,過點(diǎn)作于點(diǎn),則平面,如圖所示建立空間直角坐標(biāo)系,設(shè),其中,則設(shè)平面的法向量為,則,即,令,則又平面的一個(gè)法向量,則從而,故則直線與平面所成的角為,大小為.【點(diǎn)睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法解決立體幾何問題,屬于中檔題.18、(1)an=2n【解析】
(1)先設(shè)出數(shù)列的公差為d,結(jié)合題中條件,求出首項(xiàng)和公差,即可得出結(jié)果.(2)利用裂項(xiàng)相消法求出數(shù)列的和.【詳解】解:(1)設(shè)公差為d的等差數(shù)列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):數(shù)列的通項(xiàng)公式的求法及應(yīng)用,裂項(xiàng)相消法在數(shù)列求和中的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.19、(1)證明見解析(2)【解析】
(1)取中點(diǎn),連結(jié),證明平面得到答案.(2)如圖所示,建立空間直角坐標(biāo)系,為平面的一個(gè)法向量,平面的一個(gè)法向量為,計(jì)算夾角得到答案.【詳解】(1)取中點(diǎn),連結(jié),,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標(biāo)系,則,可取為平面的一個(gè)法向量.設(shè)平面的一個(gè)法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【點(diǎn)睛】本題考查了面面垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.20、,概率為;列聯(lián)表詳見解析,有的把握認(rèn)為交通安全意識(shí)與性別有關(guān);.【解析】
根據(jù)頻率和為列方程求得的值,計(jì)算得分在分以上的頻率即可;根據(jù)題意填寫列聯(lián)表,計(jì)算的值,對照臨界值得出結(jié)論;用分層抽樣法求得抽取各分?jǐn)?shù)段人數(shù),用列舉法求出基本事件數(shù),計(jì)算所求的概率值.【詳解】解:解得.所以,該城市駕駛員交通安全意識(shí)強(qiáng)的概率根據(jù)題意可知,安全意識(shí)強(qiáng)的人數(shù)有,其中男性為人,女性為人,填寫列聯(lián)表如下:安全意識(shí)強(qiáng)安全意識(shí)不強(qiáng)合計(jì)男性女性合計(jì)所以有的把握認(rèn)為交通安全意識(shí)與性別有關(guān).由題意可知分?jǐn)?shù)在,的分別為名和名,所以分層抽取的人數(shù)分別為名和名,設(shè)的為,,的為,,,,則基本事件空間為,,,,,,,,,,,,,,共種,設(shè)至少有人得分低于分的事件為,則事件包含的基本事件有,,,,,,,,共種所以.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)應(yīng)用問題,也考查了列舉法求古典概型的概率問題,屬于中檔題.21、(1)或;(2)證明見解析【解析】
(1)將化簡,分類討論即可;(2)由(1)得,,展開后再利用基本不等式即可.【詳解】(1)當(dāng)時(shí),,所以或或解得或,因此不等式的解集的或(2)根據(jù),當(dāng)且僅當(dāng)時(shí),等式成立.【點(diǎn)睛】本題考查絕對值不等式的解法、利用基本不等式證明不等式問題,考查學(xué)生基本的計(jì)算能力,是一道基礎(chǔ)題.22、(1)見解析(2)見解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021年廣東省廣州市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 淮北市和淮南市2025屆高三第一次質(zhì)量檢測(一模)地理試卷(含答案)
- 甘肅省隴南市(2024年-2025年小學(xué)六年級語文)部編版期末考試(上學(xué)期)試卷及答案
- 2024年組織毒活苗項(xiàng)目資金申請報(bào)告代可行性研究報(bào)告
- 2025年疾病預(yù)防控制及防疫服務(wù)項(xiàng)目申請報(bào)告模式
- 2025年電纜網(wǎng)設(shè)備項(xiàng)目規(guī)劃申請報(bào)告模范
- 廣東省肇慶市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版質(zhì)量測試((上下)學(xué)期)試卷及答案
- 廣東省湛江市(2024年-2025年小學(xué)六年級語文)部編版隨堂測試(下學(xué)期)試卷及答案
- 學(xué)校工作失職檢討書(5篇)
- 2025年皮棉清理機(jī)項(xiàng)目申請報(bào)告
- 校本課程《典籍里的中國》教案
- CNAS-CV03-2022 溫室氣體 第三部分 溫室氣體聲明審定與核查規(guī)范和指南
- 四年級上冊信息技術(shù)教案-9演示文稿巧編輯 |人教版
- 2022年人力資源管理各專業(yè)領(lǐng)域必備知識(shí)技能
- 租賃(出租)物品清單表
- 提高聚氯乙烯卷材地面一次驗(yàn)收合格率
- 【部編版】2022年語文七年級上:作文能力提升—謀篇布局(含答案)
- 甲型H1N1流感防治應(yīng)急演練方案(1)
- 稀土高鐵鋁合金電力電纜應(yīng)用參數(shù).
- LU和QR分解法解線性方程組
- 漏油器外殼的落料、拉深、沖孔級進(jìn)模的設(shè)計(jì)【畢業(yè)論文絕對精品】
評論
0/150
提交評論